Suppr超能文献

在五种人类细胞系中,对人类基因组1%的区域进行组蛋白修饰的情况。

The landscape of histone modifications across 1% of the human genome in five human cell lines.

作者信息

Koch Christoph M, Andrews Robert M, Flicek Paul, Dillon Shane C, Karaöz Ulaş, Clelland Gayle K, Wilcox Sarah, Beare David M, Fowler Joanna C, Couttet Phillippe, James Keith D, Lefebvre Gregory C, Bruce Alexander W, Dovey Oliver M, Ellis Peter D, Dhami Pawandeep, Langford Cordelia F, Weng Zhiping, Birney Ewan, Carter Nigel P, Vetrie David, Dunham Ian

机构信息

The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB101SA, United Kingdom.

出版信息

Genome Res. 2007 Jun;17(6):691-707. doi: 10.1101/gr.5704207.

Abstract

We generated high-resolution maps of histone H3 lysine 9/14 acetylation (H3ac), histone H4 lysine 5/8/12/16 acetylation (H4ac), and histone H3 at lysine 4 mono-, di-, and trimethylation (H3K4me1, H3K4me2, H3K4me3, respectively) across the ENCODE regions. Studying each modification in five human cell lines including the ENCODE Consortium common cell lines GM06990 (lymphoblastoid) and HeLa-S3, as well as K562, HFL-1, and MOLT4, we identified clear patterns of histone modification profiles with respect to genomic features. H3K4me3, H3K4me2, and H3ac modifications are tightly associated with the transcriptional start sites (TSSs) of genes, while H3K4me1 and H4ac have more widespread distributions. TSSs reveal characteristic patterns of both types of modification present and the position relative to TSSs. These patterns differ between active and inactive genes and in particular the state of H3K4me3 and H3ac modifications is highly predictive of gene activity. Away from TSSs, modification sites are enriched in H3K4me1 and relatively depleted in H3K4me3 and H3ac. Comparison between cell lines identified differences in the histone modification profiles associated with transcriptional differences between the cell lines. These results provide an overview of the functional relationship among histone modifications and gene expression in human cells.

摘要

我们生成了全基因组编码区域组蛋白H3赖氨酸9/14乙酰化(H3ac)、组蛋白H4赖氨酸5/8/12/16乙酰化(H4ac)以及组蛋白H3赖氨酸4单甲基化、二甲基化和三甲基化(分别为H3K4me1、H3K4me2、H3K4me3)的高分辨率图谱。通过研究包括基因组编码计划联盟通用细胞系GM06990(淋巴母细胞样)和HeLa-S3,以及K562、HFL-1和MOLT4在内的五种人类细胞系中的每种修饰,我们确定了与基因组特征相关的组蛋白修饰谱的清晰模式。H3K4me3、H3K4me2和H3ac修饰与基因的转录起始位点(TSS)紧密相关,而H3K4me1和H4ac具有更广泛的分布。TSS揭示了两种修饰的特征模式以及相对于TSS的位置。这些模式在活跃基因和非活跃基因之间存在差异,特别是H3K4me3和H3ac修饰的状态高度预测基因活性。在远离TSS的区域,修饰位点富含H3K4me1,而H3K4me3和H3ac相对较少。细胞系之间的比较确定了与细胞系转录差异相关的组蛋白修饰谱的差异。这些结果概述了人类细胞中组蛋白修饰与基因表达之间的功能关系。

相似文献

2
Histone H3K4ac, as a marker of active transcription start sites and enhancers, plays roles in histone eviction and RNA transcription.
Biochim Biophys Acta Gene Regul Mech. 2024 Jun;1867(2):195021. doi: 10.1016/j.bbagrm.2024.195021. Epub 2024 Feb 27.
3
Combinatorial effects of four histone modifications in transcription and differentiation.
Genomics. 2008 Jan;91(1):41-51. doi: 10.1016/j.ygeno.2007.08.010. Epub 2007 Nov 8.
5
Genome-wide relationship between histone H3 lysine 4 mono- and tri-methylation and transcription factor binding.
Genome Res. 2008 Dec;18(12):1906-17. doi: 10.1101/gr.078519.108. Epub 2008 Sep 11.
6
Global levels of histone modifications predict prostate cancer recurrence.
Prostate. 2010 Jan 1;70(1):61-9. doi: 10.1002/pros.21038.
8
Differentially expressed genes are marked by histone 3 lysine 9 trimethylation in human cancer cells.
Oncogene. 2008 Apr 10;27(17):2412-21. doi: 10.1038/sj.onc.1210895. Epub 2007 Oct 29.
9
A histone map of human chromosome 20q13.12.
PLoS One. 2009;4(2):e4479. doi: 10.1371/journal.pone.0004479. Epub 2009 Feb 20.
10
The genomic landscape of histone modifications in human T cells.
Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15782-7. doi: 10.1073/pnas.0607617103. Epub 2006 Oct 16.

引用本文的文献

2
Epigenomic signatures of sarcomatoid differentiation to guide the treatment of renal cell carcinoma.
Cell Rep. 2024 Jun 25;43(6):114350. doi: 10.1016/j.celrep.2024.114350. Epub 2024 Jun 12.
3
Emerging Roles of Vitamin B in Aging and Inflammation.
Int J Mol Sci. 2024 May 6;25(9):5044. doi: 10.3390/ijms25095044.
4
Non-canonical functions of enhancers: regulation of RNA polymerase III transcription, DNA replication, and V(D)J recombination.
Trends Genet. 2024 Jun;40(6):471-479. doi: 10.1016/j.tig.2024.04.001. Epub 2024 Apr 19.
5
Regulation of T helper cell differentiation by the interplay between histone modification and chromatin interaction.
Immunity. 2024 May 14;57(5):987-1004.e5. doi: 10.1016/j.immuni.2024.03.018. Epub 2024 Apr 12.
7
8
KDM5 Lysine Demethylases in Pathogenesis, from Basic Science Discovery to the Clinic.
Adv Exp Med Biol. 2023;1433:113-137. doi: 10.1007/978-3-031-38176-8_6.
10
Fragile sites, chromosomal lesions, tandem repeats, and disease.
Front Genet. 2022 Nov 17;13:985975. doi: 10.3389/fgene.2022.985975. eCollection 2022.

本文引用的文献

2
GENCODE: producing a reference annotation for ENCODE.
Genome Biol. 2006;7 Suppl 1(Suppl 1):S4.1-9. doi: 10.1186/gb-2006-7-s1-s4. Epub 2006 Aug 7.
3
Close sequence comparisons are sufficient to identify human cis-regulatory elements.
Genome Res. 2006 Jul;16(7):855-63. doi: 10.1101/gr.4717506. Epub 2006 Jun 12.
4
The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3.
Nature. 2006 Jul 20;442(7100):307-11. doi: 10.1038/nature04837. Epub 2006 May 28.
5
The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36.
Nature. 2006 Jul 20;442(7100):312-6. doi: 10.1038/nature04853. Epub 2006 May 28.
6
Transcript annotation in FANTOM3: mouse gene catalog based on physical cDNAs.
PLoS Genet. 2006 Apr;2(4):e62. doi: 10.1371/journal.pgen.0020062.
7
Non-coding RNA.
Hum Mol Genet. 2006 Apr 15;15 Spec No 1:R17-29. doi: 10.1093/hmg/ddl046.
8
A bivalent chromatin structure marks key developmental genes in embryonic stem cells.
Cell. 2006 Apr 21;125(2):315-26. doi: 10.1016/j.cell.2006.02.041.
9
The UCSC Known Genes.
Bioinformatics. 2006 May 1;22(9):1036-46. doi: 10.1093/bioinformatics/btl048. Epub 2006 Feb 24.
10
The UCSC Genome Browser Database: update 2006.
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D590-8. doi: 10.1093/nar/gkj144.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验