Institute for the Biology of Stem Cells, Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA.
Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA.
Stem Cells. 2023 May 15;41(5):520-539. doi: 10.1093/stmcls/sxad022.
Epigenetic mechanisms regulate the multilineage differentiation capacity of hematopoietic stem cells (HSCs) into a variety of blood and immune cells. Mapping the chromatin dynamics of functionally defined cell populations will shed mechanistic insight into 2 major, unanswered questions in stem cell biology: how does epigenetic identity contribute to a cell type's lineage potential, and how do cascades of chromatin remodeling dictate ensuing fate decisions? Our recent work revealed evidence of multilineage gene priming in HSCs, where open cis-regulatory elements (CREs) exclusively shared between HSCs and unipotent lineage cells were enriched for DNA binding motifs of known lineage-specific transcription factors. Oligopotent progenitor populations operating between the HSCs and unipotent cells play essential roles in effecting hematopoietic homeostasis. To test the hypothesis that selective HSC-primed lineage-specific CREs remain accessible throughout differentiation, we used ATAC-seq to map the temporal dynamics of chromatin remodeling during progenitor differentiation. We observed epigenetic-driven clustering of oligopotent and unipotent progenitors into distinct erythromyeloid and lymphoid branches, with multipotent HSCs and MPPs associating with the erythromyeloid lineage. We mapped the dynamics of lineage-primed CREs throughout hematopoiesis and identified both unique and shared CREs as potential lineage reinforcement mechanisms at fate branch points. Additionally, quantification of genome-wide peak count and size revealed overall greater chromatin accessibility in HSCs, allowing us to identify HSC-unique peaks as putative regulators of self-renewal and multilineage potential. Finally, CRISPRi-mediated targeting of ATACseq-identified putative CREs in HSCs allowed us to demonstrate the functional role of selective CREs in lineage-specific gene expression. These findings provide insight into the regulation of stem cell multipotency and lineage commitment throughout hematopoiesis and serve as a resource to test functional drivers of hematopoietic lineage fate.
表观遗传机制调节造血干细胞(HSCs)的多能性分化能力,使其分化为多种血液和免疫细胞。对功能定义明确的细胞群体的染色质动力学进行作图,将为干细胞生物学中的 2 个主要未解决问题提供机制见解:表观遗传身份如何有助于细胞类型的谱系潜能,以及染色质重塑级联如何决定随后的命运决定?我们最近的工作揭示了 HSCs 中多能基因启动的证据,其中 HSCs 和单能谱系细胞之间专有的开放顺式调控元件(CRE)富含已知谱系特异性转录因子的 DNA 结合基序。在 HSCs 和单能细胞之间运作的寡潜能祖细胞群体在实现造血稳态方面发挥着重要作用。为了检验选择性 HSC 启动的谱系特异性 CRE 在整个分化过程中保持可及性的假设,我们使用 ATAC-seq 来绘制祖细胞分化过程中染色质重塑的时间动态。我们观察到,寡潜能和单能祖细胞的表观遗传驱动聚类分为不同的红系-髓系和淋巴系分支,多潜能 HSCs 和 MPP 与红系-髓系相关。我们绘制了整个造血过程中谱系启动的 CRE 动态,并确定了独特和共享的 CRE 作为命运分支点的潜在谱系强化机制。此外,对全基因组峰计数和大小的定量分析揭示了 HSCs 中总体更大的染色质可及性,使我们能够将 HSC 特有的峰鉴定为自我更新和多能性潜能的潜在调节剂。最后,CRISPRi 介导的 HSCs 中 ATACseq 鉴定的假定 CRE 的靶向作用使我们能够证明选择性 CRE 在谱系特异性基因表达中的功能作用。这些发现为理解整个造血过程中干细胞多能性和谱系决定的调控提供了深入的了解,并为测试造血谱系命运的功能驱动因素提供了资源。