Min Seung-Ki, Simonis Daniel, Hense Andreas
Meteorologisches Institut, Universität Bonn, 53121 Bonn, Germany.
Philos Trans A Math Phys Eng Sci. 2007 Aug 15;365(1857):2103-16. doi: 10.1098/rsta.2007.2070.
This study explores the sensitivity of probabilistic predictions of the twenty-first century surface air temperature (SAT) changes to different multi-model averaging methods using available simulations from the Intergovernmental Panel on Climate Change fourth assessment report. A way of observationally constrained prediction is provided by training multi-model simulations for the second half of the twentieth century with respect to long-term components. The Bayesian model averaging (BMA) produces weighted probability density functions (PDFs) and we compare two methods of estimating weighting factors: Bayes factor and expectation-maximization algorithm. It is shown that Bayesian-weighted PDFs for the global mean SAT changes are characterized by multi-modal structures from the middle of the twenty-first century onward, which are not clearly seen in arithmetic ensemble mean (AEM). This occurs because BMA tends to select a few high-skilled models and down-weight the others. Additionally, Bayesian results exhibit larger means and broader PDFs in the global mean predictions than the unweighted AEM. Multi-modality is more pronounced in the continental analysis using 30-year mean (2070-2099) SATs while there is only a little effect of Bayesian weighting on the 5-95% range. These results indicate that this approach to observationally constrained probabilistic predictions can be highly sensitive to the method of training, particularly for the later half of the twenty-first century, and that a more comprehensive approach combining different regions and/or variables is required.
本研究利用政府间气候变化专门委员会第四次评估报告中的现有模拟数据,探讨了21世纪地表气温(SAT)变化概率预测对不同多模型平均方法的敏感性。通过对20世纪下半叶的多模型模拟进行长期分量训练,提供了一种观测约束预测方法。贝叶斯模型平均法(BMA)产生加权概率密度函数(PDF),我们比较了两种估计加权因子的方法:贝叶斯因子和期望最大化算法。结果表明,从21世纪中叶起,全球平均SAT变化的贝叶斯加权PDF具有多峰结构,而在算术集合平均(AEM)中则不明显。这是因为BMA倾向于选择一些高技能模型并降低其他模型的权重。此外,在全球平均预测中,贝叶斯结果比未加权的AEM表现出更大的均值和更宽的PDF。在使用30年平均(2070 - 2099年)SAT的大陆分析中,多峰性更为明显,而贝叶斯加权对5 - 95%范围的影响较小。这些结果表明,这种观测约束概率预测方法对训练方法可能高度敏感,特别是对于21世纪后半叶,并且需要一种结合不同区域和/或变量的更全面方法。