Suppr超能文献

一种基于扰动物理集合进行区域气候变化概率预测的方法。

A methodology for probabilistic predictions of regional climate change from perturbed physics ensembles.

作者信息

Murphy J M, Booth B B B, Collins M, Harris G R, Sexton D M H, Webb M J

机构信息

Hadley Centre for Climate Prediction and Research, Met Office, Fitzroy Road, Exeter, UK.

出版信息

Philos Trans A Math Phys Eng Sci. 2007 Aug 15;365(1857):1993-2028. doi: 10.1098/rsta.2007.2077.

Abstract

A methodology is described for probabilistic predictions of future climate. This is based on a set of ensemble simulations of equilibrium and time-dependent changes, carried out by perturbing poorly constrained parameters controlling key physical and biogeochemical processes in the HadCM3 coupled ocean-atmosphere global climate model. These (ongoing) experiments allow quantification of the effects of earth system modelling uncertainties and internal climate variability on feedbacks likely to exert a significant influence on twenty-first century climate at large regional scales. A further ensemble of regional climate simulations at 25km resolution is being produced for Europe, allowing the specification of probabilistic predictions at spatial scales required for studies of climate impacts. The ensemble simulations are processed using a set of statistical procedures, the centrepiece of which is a Bayesian statistical framework designed for use with complex but imperfect models. This supports the generation of probabilities constrained by a wide range of observational metrics, and also by expert-specified prior distributions defining the model parameter space. The Bayesian framework also accounts for additional uncertainty introduced by structural modelling errors, which are estimated using our ensembles to predict the results of alternative climate models containing different structural assumptions. This facilitates the generation of probabilistic predictions combining information from perturbed physics and multi-model ensemble simulations. The methodology makes extensive use of emulation and scaling techniques trained on climate model results. These are used to sample the equilibrium response to doubled carbon dioxide at any required point in the parameter space of surface and atmospheric processes, to sample time-dependent changes by combining this information with ensembles sampling uncertainties in the transient response of a wider set of earth system processes, and to sample changes at local scales. The methodology is necessarily dependent on a number of expert choices, which are highlighted throughout the paper.

摘要

本文描述了一种用于未来气候概率预测的方法。该方法基于一组平衡态和随时间变化的变化的集合模拟,通过对HadCM3耦合海洋-大气全球气候模型中控制关键物理和生物地球化学过程的约束较差的参数进行扰动来实现。这些(正在进行的)实验能够量化地球系统建模不确定性和内部气候变率对可能在大区域尺度上对21世纪气候产生重大影响的反馈的影响。正在为欧洲生成另一组分辨率为25公里的区域气候模拟,以便在气候影响研究所需的空间尺度上指定概率预测。集合模拟使用一组统计程序进行处理,其中核心是一个为与复杂但不完善的模型一起使用而设计的贝叶斯统计框架。这支持生成受广泛观测指标以及定义模型参数空间的专家指定先验分布约束的概率。贝叶斯框架还考虑了结构建模误差引入的额外不确定性,这些误差使用我们的集合来估计,以预测包含不同结构假设的替代气候模型的结果。这有助于生成结合来自扰动物理和多模型集合模拟信息的概率预测。该方法广泛使用基于气候模型结果训练的仿真和缩放技术。这些技术用于在地表和大气过程的参数空间中的任何所需点对二氧化碳加倍的平衡响应进行采样,通过将此信息与更广泛的地球系统过程瞬态响应中的集合采样不确定性相结合来对随时间变化的变化进行采样,并在局部尺度上进行采样。该方法必然依赖于一些专家选择,本文将对这些选择进行重点强调。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验