Knutti Reto, Stocker Thomas F, Joos Fortunat, Plattner Gian-Kasper
Climate and Environmental Physics, Physics Institute, University of Bern, Switzerland.
Nature. 2002 Apr 18;416(6882):719-23. doi: 10.1038/416719a.
The assessment of uncertainties in global warming projections is often based on expert judgement, because a number of key variables in climate change are poorly quantified. In particular, the sensitivity of climate to changing greenhouse-gas concentrations in the atmosphere and the radiative forcing effects by aerosols are not well constrained, leading to large uncertainties in global warming simulations. Here we present a Monte Carlo approach to produce probabilistic climate projections, using a climate model of reduced complexity. The uncertainties in the input parameters and in the model itself are taken into account, and past observations of oceanic and atmospheric warming are used to constrain the range of realistic model responses. We obtain a probability density function for the present-day total radiative forcing, giving 1.4 to 2.4 W m-2 for the 5-95 per cent confidence range, narrowing the global-mean indirect aerosol effect to the range of 0 to -1.2 W m-2. Ensemble simulations for two illustrative emission scenarios suggest a 40 per cent probability that global-mean surface temperature increase will exceed the range predicted by the Intergovernmental Panel on Climate Change (IPCC), but only a 5 per cent probability that warming will fall below that range.
全球变暖预测中的不确定性评估通常基于专家判断,因为气候变化中的一些关键变量难以精确量化。特别是,气候对大气中不断变化的温室气体浓度的敏感性以及气溶胶的辐射强迫效应尚未得到很好的限制,导致全球变暖模拟存在很大的不确定性。在此,我们提出一种蒙特卡罗方法,使用一个复杂度降低的气候模型来生成概率性气候预测。该方法考虑了输入参数和模型本身的不确定性,并利用过去海洋和大气变暖的观测数据来限制现实模型响应的范围。我们获得了当前总辐射强迫的概率密度函数,其5%至95%置信区间为1.4至2.4瓦每平方米,将全球平均间接气溶胶效应范围缩小至0至 -1.2瓦每平方米。针对两种说明性排放情景的集合模拟表明,全球平均地表温度升高超过政府间气候变化专门委员会(IPCC)预测范围的概率为40%,但变暖低于该范围的概率仅为5%。