Lott Susan E, Kreitman Martin, Palsson Arnar, Alekseeva Elena, Ludwig Michael Z
Committee on Genetics, Department of Ecology and Evolution, University of Chicago, 1101 East 57th Street, Chicago, IL 60637, USA.
Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):10926-31. doi: 10.1073/pnas.0701359104. Epub 2007 Jun 14.
Segmentation in Drosophila embryogenesis occurs through a hierarchical cascade of regulatory gene expression driven by the establishment of a diffusion-mediated morphogen gradient. Here, we investigate the response of this pattern formation process to genetic variation and evolution in egg size. Specifically, we ask whether spatial localization of gap genes Kruppel (Kr) and giant (gt) and the pair-rule gene even-skipped (eve) during cellularization is robust to genetic variation in embryo length in three Drosophila melanogaster isolines and two closely related species. We identified two wild-derived strains of D. melanogaster whose eggs differ by approximately 25% in length when reared under identical conditions. These two lines, a D. melanogaster laboratory stock (w1118), and offspring from crosses between the lines all exhibit precise scaling in the placement of gap and pair-rule gene expression along the anterior-posterior axis in relation to embryo length. Genetic analysis indicates that this scaling is maternally controlled. Maternal regulation of scaling must be required for consistent localization of segmentation gene expression because embryo size, a genetically variable and adaptive trait, is maternally inherited. We also investigated spatial scaling between these D. melanogaster lines and single lines of Drosophila sechellia and Drosophila simulans, the latter two differing by approximately 25% in egg length. In contrast to the robust scaling we observed within species, localization of gene expression relative to embryo length differs significantly between the three species. Thus, the developmental mechanism that assures robust scaling within a species does not prevent rapid evolution between species.
果蝇胚胎发育过程中的体节形成是通过由扩散介导的形态发生素梯度建立所驱动的调控基因表达的层次级联来实现的。在这里,我们研究这种模式形成过程对卵大小的遗传变异和进化的响应。具体而言,我们询问在细胞化过程中,间隙基因Kruppel(Kr)和giant(gt)以及成对规则基因even-skipped(eve)的空间定位对于三种黑腹果蝇同基因系和两个近缘物种中胚胎长度的遗传变异是否具有稳健性。我们鉴定出两个野生来源的黑腹果蝇品系,在相同条件下饲养时,它们的卵长度相差约25%。这两个品系、一个黑腹果蝇实验室品系(w1118)以及品系间杂交的后代在沿前后轴的间隙基因和成对规则基因表达的位置上,相对于胚胎长度均表现出精确的比例缩放。遗传分析表明这种比例缩放是由母体控制的。由于胚胎大小是一种可遗传变异且具有适应性的性状,是母体遗传的,所以母体对比例缩放的调控对于体节基因表达的一致定位必定是必需的。我们还研究了这些黑腹果蝇品系与果蝇属的海氏果蝇和拟果蝇的单系之间的空间比例缩放,后两者的卵长度相差约25%。与我们在物种内观察到的稳健比例缩放不同,这三个物种之间基因表达相对于胚胎长度的定位存在显著差异。因此,确保物种内稳健比例缩放的发育机制并不能阻止物种间的快速进化。