Baraldi Patrizia, Manginelli Angela A, Maieron Marta, Liberati Diego, Porro Carlo A
Department of Scienze Biomediche, University of Modena and Reggio Emilia, V. Campi 287, I-41100 Modena, Italy.
Neuroimage. 2007 Aug 1;37(1):189-201. doi: 10.1016/j.neuroimage.2007.02.045. Epub 2007 Mar 24.
Being able to estimate the fMRI-BOLD response following a single task or stimulus is certainly of value, since it allows to characterize its relationship to different aspects either of the stimulus, or of the subject's performance. In order to detect and characterize BOLD responses in single trials, we developed and validated a procedure based on an AutoRegressive model with eXogenous Input (ARX). The use of an individual exogenous input for each voxel makes the modeling sensitive enough to reveal differences across regions, avoiding any a priori assumption about the reference signal. The detection of variability across trials is ensured by a suitable choice, for each voxel, of the order of the moving average, which in our implementation determines the relative delay between the recorded and the reference signal. This is a quality useful in finding different time profiles of activation from high temporal resolution fMRI data. The results obtained from simulated fMRI data resulting from synthetic activations in actual noise indicate that such approach allows to evaluate important features of the response, such as the time to onset, and time to peak. Moreover, the results obtained from real high temporal resolution fMRI data acquired at l.5 T during a motor task are consistent with previous knowledge about the responses of different cortical areas in motor programming and execution. The proposed procedure should also prove useful as a pre-processing step in different approaches to the analysis of fMRI data.
能够估计单次任务或刺激后的功能磁共振成像血氧水平依赖(fMRI-BOLD)反应无疑具有重要价值,因为它能够刻画该反应与刺激的不同方面或受试者表现之间的关系。为了在单次试验中检测和刻画BOLD反应,我们开发并验证了一种基于带外生输入的自回归模型(ARX)的程序。对每个体素使用单独的外生输入使得该模型足够敏感,能够揭示不同区域之间的差异,避免了对参考信号的任何先验假设。通过为每个体素适当选择移动平均的阶数来确保对不同试验间变异性的检测,在我们的实现中,这决定了记录信号与参考信号之间的相对延迟。这一特性有助于从高时间分辨率的fMRI数据中找到不同的激活时间轮廓。从实际噪声中的合成激活产生的模拟fMRI数据获得的结果表明,这种方法能够评估反应的重要特征,如起始时间和峰值时间。此外,在1.5T磁场下进行运动任务时采集的真实高时间分辨率fMRI数据所得到的结果与先前关于运动编程和执行过程中不同皮层区域反应的知识一致。所提出的程序作为fMRI数据分析的不同方法中的预处理步骤也应被证明是有用的。