Fu Ling, Isobe Kazumasa, Zeng Qin, Suzukawa Kazumi, Takekoshi Kazuhiro, Kawakami Yasushi
Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
Eur J Pharmacol. 2007 Aug 13;569(1-2):155-62. doi: 10.1016/j.ejphar.2007.05.005. Epub 2007 May 13.
Recently, the insulin-sensitizing adipokine adiponectin and the insulin resistance-inducing adipokine tumor necrosis factor-alpha (TNF-alpha) were reported to inhibit each other's production in adipocytes. We investigated the effects of two beta(3)-adrenoceptor agonists, 5-[(2R)-2-[[(2R)-2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]-1,3-benzodioxole-2,2-dicarboxylate (CL-316,243) and (+/-)-(R(),R())-[4-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]phenoxy]acetic acid (BRL37344), on the gene expression of adiponectin, two adiponectin receptors, and TNF-alpha in adipose tissues of C57BL/6J mice. CL-316,243 and BRL37344 downregulated adiponectin, but upregulated adiponectin receptor 2 (not receptor 1) in epididymal or/and subcutaneous white adipose tissues and in brown adipose tissue. TNF-alpha expression was upregulated only in epididymal adipose tissue. To further explore these effects, we treated differentiated 3T3-L1 adipocytes with the non-selective beta-adrenoceptor agonist isoproterenol. As a result, adiponectin receptor 2 (but not receptor 1) gene expression and TNF-alpha protein expression increased, but gene expression and secretion of adiponectin decreased. The upregulation of adiponectin receptor 2 by isoproterenol is most likely via beta(2),beta(3)-adrenoceptors, adenylyl cyclases, and protein kinase A (PKA). However, the accompanying activation of AMP-activated protein kinase (AMPK) may inhibit this upregulation. Our results suggest that upregulation of TNF-alpha and downregulation of adiponectin by beta-adrenoceptor activation may contribute to the pathogenesis of catecholamine-induced insulin resistance, and that upregulation of adiponectin receptor 2 may be a feedback result of reduced adiponectin.
最近,有报道称,具有胰岛素增敏作用的脂肪因子脂联素和诱导胰岛素抵抗的脂肪因子肿瘤坏死因子-α(TNF-α)在脂肪细胞中相互抑制对方的产生。我们研究了两种β(3)-肾上腺素能受体激动剂,5-[(2R)-2-[[(2R)-2-(3-氯苯基)-2-羟乙基]氨基]丙基]-1,3-苯并二恶唑-2,2-二羧酸酯(CL-316,243)和(+/-)-(R(),R())-[4-[2-[[2-(3-氯苯基)-2-羟乙基]氨基]丙基]苯氧基]乙酸(BRL37344),对C57BL/6J小鼠脂肪组织中脂联素、两种脂联素受体以及TNF-α基因表达的影响。CL-316,243和BRL37344下调了附睾或/和皮下白色脂肪组织以及棕色脂肪组织中的脂联素,但上调了脂联素受体2(而非受体1)。TNF-α的表达仅在附睾脂肪组织中上调。为了进一步探究这些作用,我们用非选择性β-肾上腺素能受体激动剂异丙肾上腺素处理分化的3T3-L1脂肪细胞。结果,脂联素受体2(而非受体1)的基因表达以及TNF-α蛋白表达增加,但脂联素的基因表达和分泌减少。异丙肾上腺素对脂联素受体2的上调很可能是通过β(2),β(3)-肾上腺素能受体、腺苷酸环化酶和蛋白激酶A(PKA)实现的。然而,伴随的AMP激活蛋白激酶(AMPK)的激活可能会抑制这种上调。我们的结果表明,β-肾上腺素能受体激活导致的TNF-α上调和脂联素下调可能参与了儿茶酚胺诱导的胰岛素抵抗的发病机制,并且脂联素受体2的上调可能是脂联素减少的反馈结果。