Clookey Stephanie L, Welly Rebecca J, Shay Dusti, Woodford Makenzie L, Fritsche Kevin L, Rector R Scott, Padilla Jaume, Lubahn Dennis B, Vieira-Potter Victoria J
Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States.
Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States.
Front Physiol. 2019 Feb 5;10:9. doi: 10.3389/fphys.2019.00009. eCollection 2019.
Metabolic disease risk escalates following menopause. The mechanism is not fully known, but likely involves reduced signaling through estrogen receptor alpha (ERα), which is highly expressed in brown and white adipose tissue (BAT and WAT). Test the hypothesis that uncoupling protein (UCP1) activation mitigates metabolic dysfunction caused by loss of signaling through ERα. At 8 weeks of age, female ERα knock out (KO) and wild-type mice were housed at 28°C and fed a Western-style high-fat, high sucrose diet (HFD) or a normal low-fat chow diet (NC) for 10 weeks. During the final 2 weeks, they received daily injections of CL 316,256 (CL), a selective β3 adrenergic agonist, or vehicle control (CTRL), creating eight groups: WT-CTRL, WT-CL, KO-CTRL, and KO-CL on HFD or NC; = 4-10/group. ERαKO demonstrated exacerbated HFD-induced adiposity gain ( < 0.001) and insulin resistance ( = 0.006). CL treatment improved insulin sensitivity ( < 0.05) and normalized ERαKO-induced adiposity increase ( < 0.05). In both genotypes, CL increased resting energy expenditure ( < 0.05) and induced WAT beiging indicated by increased UCP1 protein in both perigonadal (PGAT) and subcutaneous (SQAT) depots. These effects were attenuated under HFD conditions ( < 0.05). In KO, CL reduced HFD energy consumption compared to CTRL ( < 0.05). Remarkably, CL increased WAT ERβ protein levels of both WT and KO ( < 0.001), revealing CL-mediated changes in estrogen signaling may have protective metabolic effects. CL completely restored metabolic dysfunction in ERαKO mice. Thus, UCP1 may be a therapeutic target for treating metabolic dysfunction following loss of estrogen receptor signaling.
绝经后代谢疾病风险会升高。其机制尚不完全清楚,但可能涉及通过雌激素受体α(ERα)的信号传导减少,ERα在棕色和白色脂肪组织(BAT和WAT)中高表达。检验解偶联蛋白(UCP1)激活可减轻因ERα信号传导丧失所致代谢功能障碍的假设。8周龄时,将雌性ERα基因敲除(KO)小鼠和野生型小鼠饲养在28°C环境中,给予西式高脂肪、高蔗糖饮食(HFD)或正常低脂普通饮食(NC)10周。在最后2周,它们每天接受选择性β3肾上腺素能激动剂CL 316,256(CL)或载体对照(CTRL)注射,形成八组:HFD或NC饮食下的WT-CTRL、WT-CL、KO-CTRL和KO-CL;每组n = 4 - 10。ERαKO小鼠表现出HFD诱导的肥胖增加加剧(P < 0.001)和胰岛素抵抗(P = 0.006)。CL治疗改善了胰岛素敏感性(P < 0.05)并使ERαKO诱导的肥胖增加恢复正常(P < 0.05)。在两种基因型中,CL均增加了静息能量消耗(P < 0.05)并诱导WAT米色化,表现为性腺周围(PGAT)和皮下(SQAT)脂肪库中UCP1蛋白增加。在HFD条件下这些作用减弱(P < 0.05)。在KO小鼠中,与CTRL相比,CL降低了HFD能量消耗(P < 0.05)。值得注意的是,CL增加了WT和KO小鼠WAT中ERβ蛋白水平(P < 0.001),表明CL介导的雌激素信号变化可能具有保护性代谢作用。CL完全恢复了ERαKO小鼠的代谢功能障碍。因此,UCP1可能是治疗雌激素受体信号丧失后代谢功能障碍的治疗靶点。