Suppr超能文献

一种计算胶原-糖胺聚糖支架内产生的个体真皮成纤维细胞收缩力的新技术。

A new technique for calculating individual dermal fibroblast contractile forces generated within collagen-GAG scaffolds.

作者信息

Harley Brendan A, Freyman Toby M, Wong Matthew Q, Gibson Lorna J

机构信息

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

出版信息

Biophys J. 2007 Oct 15;93(8):2911-22. doi: 10.1529/biophysj.106.095471. Epub 2007 Jun 22.

Abstract

Cell-mediated contraction plays a critical role in many physiological and pathological processes, notably organized contraction during wound healing. Implantation of an appropriately formulated (i.e., mean pore size, chemical composition, degradation rate) three-dimensional scaffold into an in vivo wound site effectively blocks the majority of organized wound contraction and results in induced regeneration rather than scar formation. Improved understanding of cell contraction within three-dimensional constructs therefore represents an important area of study in tissue engineering. Studies of cell contraction within three-dimensional constructs typically calculate an average contractile force from the gross deformation of a macroscopic substrate by a large cell population. In this study, cellular solids theory has been applied to conventional column buckling relationships to quantify the magnitude of individual cell contraction events within a three-dimensional, collagen-glycosaminoglycan scaffold. This new technique can be used for studying cell mechanics with a wide variety of porous scaffolds that resemble low-density, open-cell foams. It extends previous methods for analyzing cell buckling of two-dimensional substrates to three-dimensional constructs. From data available in the literature, the mean contractile force (Fc) generated by individual dermal fibroblasts within the collagen-glycosaminoglycan scaffold was calculated to range between 11 and 41 nN (Fc=26+/-13 nN, mean+/-SD), with an upper bound of cell contractility estimated at 450 nN.

摘要

细胞介导的收缩在许多生理和病理过程中起着关键作用,尤其是在伤口愈合过程中的有组织收缩。将适当配方(即平均孔径、化学成分、降解速率)的三维支架植入体内伤口部位可有效阻止大部分有组织的伤口收缩,并导致诱导再生而非瘢痕形成。因此,更好地理解三维结构内的细胞收缩是组织工程学中的一个重要研究领域。对三维结构内细胞收缩的研究通常通过大量细胞群体对宏观基质的总体变形来计算平均收缩力。在本研究中,细胞固体理论已应用于传统的柱屈曲关系,以量化三维胶原 - 糖胺聚糖支架内单个细胞收缩事件的大小。这种新技术可用于研究各种类似于低密度、开孔泡沫的多孔支架的细胞力学。它将先前分析二维基质细胞屈曲的方法扩展到三维结构。根据文献中的数据,计算出胶原 - 糖胺聚糖支架内单个真皮成纤维细胞产生的平均收缩力(Fc)在11至41 nN之间(Fc = 26±13 nN,平均值±标准差),细胞收缩力的上限估计为450 nN。

相似文献

1
A new technique for calculating individual dermal fibroblast contractile forces generated within collagen-GAG scaffolds.
Biophys J. 2007 Oct 15;93(8):2911-22. doi: 10.1529/biophysj.106.095471. Epub 2007 Jun 22.
2
Cell contraction forces in scaffolds with varying pore size and cell density.
Biomaterials. 2010 Jun;31(18):4835-45. doi: 10.1016/j.biomaterials.2010.01.149. Epub 2010 Apr 2.
3
Contractile forces generated by articular chondrocytes in collagen-glycosaminoglycan matrices.
Biomaterials. 2004 Mar-Apr;25(7-8):1299-308. doi: 10.1016/j.biomaterials.2003.08.005.
4
Micromechanics of fibroblast contraction of a collagen-GAG matrix.
Exp Cell Res. 2001 Sep 10;269(1):140-53. doi: 10.1006/excr.2001.5302.
5
Measurement of contractile forces generated by individual fibroblasts on self-standing fiber scaffolds.
Biomed Microdevices. 2011 Feb;13(1):107-15. doi: 10.1007/s10544-010-9475-5.
6
Fibroblast contractile force is independent of the stiffness which resists the contraction.
Exp Cell Res. 2002 Jan 15;272(2):153-62. doi: 10.1006/excr.2001.5408.
7
Biologically active collagen-based scaffolds: advances in processing and characterization.
Philos Trans A Math Phys Eng Sci. 2010 Apr 28;368(1917):2123-39. doi: 10.1098/rsta.2010.0015.
8
Fibroblast contraction of a collagen-GAG matrix.
Biomaterials. 2001 Nov;22(21):2883-91. doi: 10.1016/s0142-9612(01)00034-5.
9
Quantification of single human dermal fibroblast contraction.
Tissue Eng. 1998 Fall;4(3):281-91. doi: 10.1089/ten.1998.4.281.

引用本文的文献

1
Biomaterial Cues for Regulation of Osteoclast Differentiation and Function in Bone Regeneration.
Adv Ther (Weinh). 2025 Jan;8(1). doi: 10.1002/adtp.202400296. Epub 2024 Nov 15.
2
Correlating Material Properties to Osteoprotegerin Expression on Nanoparticulate Mineralized Collagen Glycosaminoglycan Scaffolds.
Adv Healthc Mater. 2024 Oct;13(26):e2401037. doi: 10.1002/adhm.202401037. Epub 2024 Jun 24.
3
Multiscale mechanobiology: Coupling models of adhesion kinetics and nonlinear tissue mechanics.
Biophys J. 2022 Feb 15;121(4):525-539. doi: 10.1016/j.bpj.2022.01.012. Epub 2022 Jan 21.
5
Bio-instructive hydrogel expands the paracrine potency of mesenchymal stem cells.
Biofabrication. 2021 Jul 8;13(4). doi: 10.1088/1758-5090/ac0a32.
9
Biofabrication of phenotypic pulmonary fibrosis assays.
Biofabrication. 2019 Jun 19;11(3):032005. doi: 10.1088/1758-5090/ab2286.

本文引用的文献

1
Preparation of collagen-glycosaminoglycan copolymers for tissue regeneration.
Methods Mol Med. 1999;18:3-17. doi: 10.1385/0-89603-516-6:3.
2
Mechanical characterization of collagen-glycosaminoglycan scaffolds.
Acta Biomater. 2007 Jul;3(4):463-74. doi: 10.1016/j.actbio.2006.12.009. Epub 2007 Mar 8.
4
Matrix elasticity directs stem cell lineage specification.
Cell. 2006 Aug 25;126(4):677-89. doi: 10.1016/j.cell.2006.06.044.
8
The relationship between cell and tissue strain in three-dimensional bio-artificial tissues.
Biophys J. 2005 Feb;88(2):778-89. doi: 10.1529/biophysj.104.041947. Epub 2004 Dec 13.
9
Creep does not contribute to fatigue in bovine trabecular bone.
J Biomech Eng. 2004 Jun;126(3):321-9. doi: 10.1115/1.1762892.
10
The effect of pore size on cell adhesion in collagen-GAG scaffolds.
Biomaterials. 2005 Feb;26(4):433-41. doi: 10.1016/j.biomaterials.2004.02.052.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验