Suppr超能文献

基于生物活性胶原的支架:在处理和特性方面的进展。

Biologically active collagen-based scaffolds: advances in processing and characterization.

机构信息

Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2010 Apr 28;368(1917):2123-39. doi: 10.1098/rsta.2010.0015.

Abstract

A small number of type I collagen-glycosaminoglycan scaffolds (collagen-GAG scaffolds; CGSs) have unusual biological activity consisting primarily in inducing partial regeneration of organs in the adult mammal. Two of these are currently in use in a variety of clinical settings. CGSs appear to induce regeneration by blocking the adult healing response, following trauma, consisting of wound contraction and scar formation. Several structural determinants of biological activity have been identified, including ligands for binding of fibroblasts to the collagen surface, the mean pore size (which affects ligand density) and the degradation rate (which affects the duration of the wound contraction-blocking activity by the scaffold). Processing variables that affect these determinants include the kinetics of swelling of collagen fibres in acetic acid, freezing of the collagen-GAG suspension and cross-linking of the freeze-dried scaffold. Recent developments in the processing of CGSs include fabrication of scaffolds that are paucidisperse in pore size, scaffolds with gradients in physicochemical properties (and therefore biological activity) and scaffolds that incorporate a mineral component. Advances in the characterization of the pore structure of CGSs have been made using confocal and nonlinear optical microscopy (NLOM). The mechanical behaviour of CGSs, as well as the resistance to degradative enzymes, have been studied. Following seeding with cells (typically fibroblasts), contractile forces in the range 26-450 nN per cell are generated by the cells, leading to buckling of scaffold struts. Ongoing studies of cell-seeded CGSs with NLOM have shown an advantage over the use of confocal microscopy due to the ability of the former method to image the CGS surfaces without staining (which alters its surface ligands), reduced cell photodamage, reduced fluorophore photobleaching and the ability to image deeper inside the scaffold.

摘要

少量的 I 型胶原蛋白-糖胺聚糖支架(胶原-GAG 支架;CGS)具有异常的生物学活性,主要包括诱导成年哺乳动物器官的部分再生。其中两种目前正在各种临床环境中使用。CGS 似乎通过阻止创伤后的成年愈合反应来诱导再生,该反应包括伤口收缩和瘢痕形成。已经确定了几个生物学活性的结构决定因素,包括纤维母细胞与胶原表面结合的配体、平均孔径(影响配体密度)和降解速率(影响支架对伤口收缩的阻断活性的持续时间)。影响这些决定因素的加工变量包括胶原纤维在乙酸中溶胀的动力学、胶原-GAG 悬浮液的冷冻和冻干支架的交联。CGS 加工的最新进展包括制造孔径少分散的支架、具有物理化学性质(因此具有生物学活性)梯度的支架和包含矿物质成分的支架。使用共聚焦和非线性光学显微镜(NLOM)对 CGS 孔结构的特性进行了改进。已经研究了 CGS 的机械行为以及对降解酶的抵抗力。在细胞(通常是成纤维细胞)接种后,细胞产生 26-450 nN 范围内的收缩力,导致支架支柱弯曲。使用 NLOM 对细胞接种的 CGS 进行的正在进行的研究显示出优于共聚焦显微镜的优势,因为前者能够在不染色(改变其表面配体)的情况下对 CGS 表面进行成像,减少细胞光损伤,减少荧光团光漂白,并能够在支架内部更深的地方成像。

相似文献

1
Biologically active collagen-based scaffolds: advances in processing and characterization.
Philos Trans A Math Phys Eng Sci. 2010 Apr 28;368(1917):2123-39. doi: 10.1098/rsta.2010.0015.
2
Mechanical characterization of collagen-glycosaminoglycan scaffolds.
Acta Biomater. 2007 Jul;3(4):463-74. doi: 10.1016/j.actbio.2006.12.009. Epub 2007 Mar 8.
4
Cell contraction forces in scaffolds with varying pore size and cell density.
Biomaterials. 2010 Jun;31(18):4835-45. doi: 10.1016/j.biomaterials.2010.01.149. Epub 2010 Apr 2.
5
Formation of collagen-glycosaminoglycan blended nanofibrous scaffolds and their biological properties.
Biomacromolecules. 2005 Nov-Dec;6(6):2998-3004. doi: 10.1021/bm050318p.
6
3D porous collagen scaffolds reinforced by glycation with ribose for tissue engineering application.
Biomed Mater. 2017 Aug 21;12(5):055002. doi: 10.1088/1748-605X/aa7694.
8
Substrate stiffness and contractile behaviour modulate the functional maturation of osteoblasts on a collagen-GAG scaffold.
Acta Biomater. 2010 Nov;6(11):4305-13. doi: 10.1016/j.actbio.2010.06.001. Epub 2010 Jun 8.
9
The effect of pore size on cell adhesion in collagen-GAG scaffolds.
Biomaterials. 2005 Feb;26(4):433-41. doi: 10.1016/j.biomaterials.2004.02.052.
10
The effects of cross-linking a collagen-elastin dermal template on scaffold bio-stability and degradation.
J Tissue Eng Regen Med. 2020 Sep;14(9):1189-1200. doi: 10.1002/term.3082. Epub 2020 Jul 28.

引用本文的文献

1
Programmed wound healing in aged skin may be enhanced by mesenchymal cell loaded gene-activated scaffolds.
APL Bioeng. 2025 Apr 25;9(2):026112. doi: 10.1063/5.0240504. eCollection 2025 Jun.
2
Dual delivery gene-activated scaffold directs fibroblast activity and keratinocyte epithelization.
APL Bioeng. 2024 Jan 26;8(1):016104. doi: 10.1063/5.0174122. eCollection 2024 Mar.
6
A review and update for registered clinical studies of stem cells for non-tumorous and non-hematological diseases.
Regen Ther. 2021 Sep 13;18:355-362. doi: 10.1016/j.reth.2021.09.001. eCollection 2021 Dec.
7
8
Functional Properties of a Purified Reconstituted Bilayer Matrix Design Support Natural Wound Healing Activities.
Plast Reconstr Surg Glob Open. 2021 May 21;9(5):e3596. doi: 10.1097/GOX.0000000000003596. eCollection 2021 May.
9
GAKTpore: Stereological Characterisation Methods for Porous Foams in Biomedical Applications.
Materials (Basel). 2021 Mar 7;14(5):1269. doi: 10.3390/ma14051269.
10
Three-dimensional characterization of collagen remodeling in cell-seeded collagen scaffolds via polarization second harmonic generation.
Biomed Opt Express. 2021 Jan 28;12(2):1136-1153. doi: 10.1364/BOE.411501. eCollection 2021 Feb 1.

本文引用的文献

2
Design of a multiphase osteochondral scaffold. I. Control of chemical composition.
J Biomed Mater Res A. 2010 Mar 1;92(3):1057-65. doi: 10.1002/jbm.a.32415.
5
Reanimation of thumb extension after upper extremity degloving injury treated with Integra.
J Hand Surg Eur Vol. 2008 Dec;33(6):800-2. doi: 10.1177/1753193408096021. Epub 2008 Oct 20.
7
Microarchitecture of three-dimensional scaffolds influences cell migration behavior via junction interactions.
Biophys J. 2008 Oct;95(8):4013-24. doi: 10.1529/biophysj.107.122598. Epub 2008 Jul 11.
8
Characterization of mineralized collagen-glycosaminoglycan scaffolds for bone regeneration.
Acta Biomater. 2008 May;4(3):490-503. doi: 10.1016/j.actbio.2008.01.003. Epub 2008 Jan 26.
9
Modeling tissue morphogenesis and cancer in 3D.
Cell. 2007 Aug 24;130(4):601-10. doi: 10.1016/j.cell.2007.08.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验