Suppr超能文献

腔室缩放:蛋白质功能预测中腔室感知基序的自动优化

Cavity scaling: automated refinement of cavity-aware motifs in protein function prediction.

作者信息

Chen Brian Y, Bryant Drew H, Fofanov Viacheslav Y, Kristensen David M, Cruess Amanda E, Kimmel Marek, Lichtarge Olivier, Kavraki Lydia E

机构信息

Department of Computer Science, Rice University, Houston, TX 77005, USA.

出版信息

J Bioinform Comput Biol. 2007 Apr;5(2a):353-82. doi: 10.1142/s021972000700276x.

Abstract

Algorithms for geometric and chemical comparison of protein substructure can be useful for many applications in protein function prediction. These motif matching algorithms identify matches of geometric and chemical similarity between well-studied functional sites, motifs, and substructures of functionally uncharacterized proteins, targets. For the purpose of function prediction, the accuracy of motif matching algorithms can be evaluated with the number of statistically significant matches to functionally related proteins, true positives (TPs), and the number of statistically insignificant matches to functionally unrelated proteins, false positives (FPs). Our earlier work developed cavity-aware motifs which use motif points to represent functionally significant atoms and C-spheres to represent functionally significant volumes. We observed that cavity-aware motifs match significantly fewer FPs than matches containing only motif points. We also observed that high-impact C-spheres, which significantly contribute to the reduction of FPs, can be isolated automatically with a technique we call Cavity Scaling. This paper extends our earlier work by demonstrating that C-spheres can be used to accelerate point-based geometric and chemical comparison algorithms, maintaining accuracy while reducing runtime. We also demonstrate that the placement of C-spheres can significantly affect the number of TPs and FPs identified by a cavity-aware motif. While the optimal placement of C-spheres remains a difficult open problem, we compared two logical placement strategies to better understand C-sphere placement.

摘要

用于蛋白质亚结构几何和化学比较的算法在蛋白质功能预测的许多应用中可能会很有用。这些基序匹配算法可识别经过充分研究的功能位点、基序以及功能未表征蛋白质(目标)的亚结构之间的几何和化学相似性匹配。出于功能预测的目的,基序匹配算法的准确性可以通过与功能相关蛋白质的统计学显著匹配数(真阳性,TP)以及与功能不相关蛋白质的统计学不显著匹配数(假阳性,FP)来评估。我们早期的工作开发了腔感知基序,它使用基序点来表示功能上重要的原子,并用C球来表示功能上重要的体积。我们观察到,与仅包含基序点的匹配相比,腔感知基序匹配的FP要少得多。我们还观察到,对减少FP有显著贡献的高影响C球可以通过一种我们称为腔缩放的技术自动分离出来。本文扩展了我们早期的工作,证明了C球可用于加速基于点的几何和化学比较算法,在保持准确性的同时减少运行时间。我们还证明了C球的放置会显著影响腔感知基序识别的TP和FP的数量。虽然C球的最佳放置仍然是一个困难的开放问题,但我们比较了两种逻辑放置策略,以更好地理解C球的放置。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验