Suppr超能文献

利用随机配体文库的分子对接计算预测蛋白质的配体结合位点。

Prediction of ligand-binding sites of proteins by molecular docking calculation for a random ligand library.

机构信息

Protein Structural Information Analysis Team, Biological Information Research Center (BIRC), National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo 135-0064, Japan.

出版信息

Protein Sci. 2011 Jan;20(1):95-106. doi: 10.1002/pro.540.

Abstract

A new approach to predicting the ligand-binding sites of proteins was developed, using protein-ligand docking computation. In this method, many compounds in a random library are docked onto the whole protein surface. We assumed that the true ligand-binding site would exhibit stronger affinity to the compounds in the random library than the other sites, even if the random library did not include the ligand corresponding to the true binding site. We also assumed that the affinity of the true ligand-binding site would be correlated to the docking scores of the compounds in the random library, if the ligand-binding site was correctly predicted. We call this method the molecular-docking binding-site finding (MolSite) method. The MolSite method was applied to 89 known protein-ligand complex structures extracted from the Protein Data Bank, and it predicted the correct binding sites with about 80-99% accuracy, when only the single top-ranked site was adopted. In addition, the average docking score was weakly correlated to the experimental protein-ligand binding free energy, with a correlation coefficient of 0.44.

摘要

开发了一种新的蛋白质配体结合位点预测方法,该方法使用蛋白质-配体对接计算。在该方法中,随机库中的许多化合物被对接至整个蛋白质表面。我们假设,即使随机库中不包含与真实结合位点相对应的配体,真实配体结合位点也会与随机库中的化合物表现出更强的亲和力。我们还假设,如果配体结合位点被正确预测,那么真实配体结合位点的亲和力将与随机库中化合物的对接评分相关。我们将这种方法称为分子对接结合位点发现(MolSite)方法。MolSite 方法应用于从蛋白质数据库中提取的 89 个已知蛋白质-配体复合物结构,当仅采用单个排名最高的结合位点时,该方法预测正确的结合位点的准确率约为 80-99%。此外,平均对接评分与实验蛋白质-配体结合自由能呈弱相关性,相关系数为 0.44。

相似文献

5
Machine learning in computational docking.计算对接中的机器学习。
Artif Intell Med. 2015 Mar;63(3):135-52. doi: 10.1016/j.artmed.2015.02.002. Epub 2015 Feb 16.

引用本文的文献

3
A GU-Net-Based Architecture Predicting Ligand-Protein-Binding Atoms.一种基于GU-Net的预测配体-蛋白质结合原子的架构。
J Med Signals Sens. 2023 Mar 27;13(1):1-10. doi: 10.4103/jmss.jmss_142_21. eCollection 2023 Jan-Mar.

本文引用的文献

1
Protein pockets: inventory, shape, and comparison.蛋白质口袋:库存、形状和比较。
J Chem Inf Model. 2010 Apr 26;50(4):589-603. doi: 10.1021/ci900397t.
9
Two 'Golden Ratio' indices in fragment-based drug discovery.基于片段的药物发现中的两个“黄金比例”指标。
Drug Discov Today. 2009 Mar;14(5-6):321-8. doi: 10.1016/j.drudis.2008.10.006. Epub 2008 Dec 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验