Suppr超能文献

Use of a broad-host-range gyrA plasmid for genetic characterization of fluoroquinolone-resistant gram-negative bacteria.

作者信息

Heisig P, Wiedemann B

机构信息

Abteilung Pharmazeutische Mikrobiologie, Universitaet Bonn, Federal Republic of Germany.

出版信息

Antimicrob Agents Chemother. 1991 Oct;35(10):2031-6. doi: 10.1128/AAC.35.10.2031.

Abstract

The gyrA genotypes of ciprofloxacin-resistant clinical isolates of Escherichia coli (n = 3), Klebsiella pneumoniae (n = 4), Providencia stuartii (n = 2), Pseudomonas aeruginosa (n = 1), and Acinetobacter calcoaceticus (n = 1) were analyzed in a dominance test. This test is based on the dominance of a wild-type gyrA gene (gyrA+) over the quinolone resistance allele (gyrA) in a heterodiploid strain. Plasmid pBP515, developed to carry the gyrA+ gene of E. coli K-12 on a broad-host-range vector derived from pRSF1010, was used to obtain heterodiploid strains. Plasmid pBP515 encodes kanamycin and gentamicin resistance and is transferable via mobilization by a pRP1-derived helper plasmid (pRP1H) to strains of several gram-negative species. After the introduction of pBP515, single-cell MICs (as measured by reduction of the viable cell count) of ciprofloxacin and nalidixic acid decreased by 4- to greater than 8,000-fold for all strains tested, and 8 of the 11 strains regained ciprofloxacin susceptibilities similar to those of the respective wild types. The results indicate that (i) high-level fluoroquinolone resistance in clinical isolates of E. coli, K. pneumoniae, P. aeruginosa, and A. calcoaceticus can result from mutational alteration of the gyrA gene, and (ii) gyrA mutations are involved in high levels of fluoroquinolone resistance in P. stuartii. Additional mutations outside the gyrA locus may contribute to resistance in K. pneumoniae and P. stuartii.

摘要

相似文献

1
Use of a broad-host-range gyrA plasmid for genetic characterization of fluoroquinolone-resistant gram-negative bacteria.
Antimicrob Agents Chemother. 1991 Oct;35(10):2031-6. doi: 10.1128/AAC.35.10.2031.
2
Quinolone resistance from a transferable plasmid.
Lancet. 1998 Mar 14;351(9105):797-9. doi: 10.1016/S0140-6736(97)07322-4.
3
gyrA mutations associated with fluoroquinolone resistance in eight species of Enterobacteriaceae.
Antimicrob Agents Chemother. 1998 Oct;42(10):2661-7. doi: 10.1128/AAC.42.10.2661.
4
Spontaneous quinolone resistance in Serratia marcescens due to a mutation in gyrA.
Antimicrob Agents Chemother. 1991 May;35(5):898-902. doi: 10.1128/AAC.35.5.898.
10
Novel gyrA point mutation in a strain of Escherichia coli resistant to fluoroquinolones but not to nalidixic acid.
Antimicrob Agents Chemother. 1993 Jun;37(6):1247-52. doi: 10.1128/AAC.37.6.1247.

引用本文的文献

2
Alteration of Membrane Permeability of Bacteria and Yeast by High Frequency Alternating Current (HFAC).
Open Microbiol J. 2008;2:32-7. doi: 10.2174/1874285800802010032. Epub 2008 Apr 15.
5
7
DNA gyrase, topoisomerase IV, and the 4-quinolones.
Microbiol Mol Biol Rev. 1997 Sep;61(3):377-92. doi: 10.1128/mmbr.61.3.377-392.1997.
10
Mechanisms of resistance to fluoroquinolones: state-of-the-art 1992-1994.
Drugs. 1995;49 Suppl 2:29-35. doi: 10.2165/00003495-199500492-00006.

本文引用的文献

1
Segregation of Lambda Lysogenicity during Bacterial Recombination in Escherichia Coli K12.
Genetics. 1954 Jul;39(4):429-39. doi: 10.1093/genetics/39.4.429.
5
DNA topoisomerases.
Annu Rev Biochem. 1981;50:879-910. doi: 10.1146/annurev.bi.50.070181.004311.
7
Frequency of appearance of resistant variants to norfloxacin and nalidixic acid.
J Antimicrob Chemother. 1984 May;13 Suppl B:33-8. doi: 10.1093/jac/13.suppl_b.33.
9
Escherichia coli K-12 mutants resistant to nalidixic acid: genetic mapping and dominance studies.
J Bacteriol. 1969 Jul;99(1):238-41. doi: 10.1128/jb.99.1.238-241.1969.
10
Molecular nature of two nonconjugative plasmids carrying drug resistance genes.
J Bacteriol. 1974 Feb;117(2):619-30. doi: 10.1128/jb.117.2.619-630.1974.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验