Kuprov Ilya, Craggs Timothy D, Jackson Sophie E, Hore P J
Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK.
J Am Chem Soc. 2007 Jul 25;129(29):9004-13. doi: 10.1021/ja0705792. Epub 2007 Jun 30.
We describe experimental results and theoretical models for nuclear and electron spin relaxation processes occurring during the evolution of 19F-labeled geminate radical pairs on a nanosecond time scale. In magnetic fields of over 10 T, electron-nucleus dipolar cross-relaxation and longitudinal DeltaHFC-Deltag (hyperfine coupling anisotropy--g-tensor anisotropy) cross-correlation are shown to be negligibly slow. The dominant relaxation process is transverse DeltaHFC-Deltag cross-correlation, which is shown to lead to an inversion in the geminate 19F chemically induced dynamic nuclear polarization (CIDNP) phase for sufficiently large rotational correlation times. This inversion has recently been observed experimentally and used as a probe of local mobility in partially denatured proteins (Khan, F.; et al. J. Am. Chem. Soc. 2006, 128, 10729-10737). The essential feature of the spin dynamics model employed here is the use of the complete spin state space and the complete relaxation superoperator. On the basis of the results reported, we recommend this approach for reliable treatment of magnetokinetic systems in which relaxation effects are important.
我们描述了在纳秒时间尺度上,¹⁹F标记的双生自由基对演化过程中发生的核自旋和电子自旋弛豫过程的实验结果和理论模型。在超过10 T的磁场中,电子-核偶极交叉弛豫和纵向ΔHFC-Δg(超精细耦合各向异性 - g张量各向异性)交叉关联被证明极其缓慢,可以忽略不计。主要的弛豫过程是横向ΔHFC-Δg交叉关联,对于足够大的旋转相关时间,它会导致双生¹⁹F化学诱导动态核极化(CIDNP)相位反转。最近已通过实验观察到这种反转,并将其用作部分变性蛋白质中局部流动性的探针(Khan, F.等人,《美国化学会志》,2006年,128卷,10729 - 10737页)。这里采用的自旋动力学模型的基本特征是使用完整的自旋态空间和完整的弛豫超算符。基于所报道的结果,我们推荐这种方法用于可靠处理其中弛豫效应很重要的磁动力学系统。