Suppr超能文献

利用光化学诱导动态核极化在 fMRI 中检测痕量抗病毒药物法匹拉韦。

Detection of sub-nmol amounts of the antiviral drug favipiravir in F MRI using photo-chemically induced dynamic nuclear polarization.

机构信息

Institute of Biometry and Medical Informatics, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany.

Pure Devices GmbH, 97222, Rimpar, Germany.

出版信息

Sci Rep. 2024 Jan 17;14(1):1527. doi: 10.1038/s41598-024-51454-4.

Abstract

In biological tissues, F magnetic resonance (MR) enables the non-invasive, background-free detection of F-containing biomarkers. However, the signal-to-noise ratio (SNR) is usually low because biomarkers are typically present at low concentrations. Measurements at low magnetic fields further reduce the SNR. In a proof-of-principal study we applied LED-based photo-chemically induced dynamic nuclear polarization (photo-CIDNP) to amplify the F signal at 0.6 T. For the first time, F MR imaging (MRI) and spectroscopy (MRS) of a fully biocompatible model system containing the antiviral drug favipiravir has been successfully performed. This fluorinated drug has been used to treat Ebola and COVID-19. Since the partially cyclic reaction scheme for photo-CIDNP allows for multiple data acquisitions, averaging further improved the SNR. The mean signal gain factor for F has been estimated to be in the order of 10. An in-plane resolution of 0.39 × 0.39 mm enabled the analysis of spatially varying degrees of hyperpolarization. The minimal detectable amount of favipiravir per voxel was estimated to about 500 pmol. The results show that F photo-CIDNP is a promising method for the non-invasive detection of suitable F-containing drugs and other compounds with very low levels of the substance.

摘要

在生物组织中,F 磁共振(MR)能够非侵入式、无背景地检测含 F 的生物标志物。然而,由于生物标志物通常浓度较低,因此信号噪声比(SNR)通常较低。在较低磁场下进行测量会进一步降低 SNR。在一项原理验证研究中,我们应用基于 LED 的光化学诱导动态核极化(photo-CIDNP)在 0.6T 下放大 F 信号。首次成功地对含有抗病毒药物法匹拉韦的完全生物相容模型系统进行了 F 磁共振成像(MRI)和光谱(MRS)研究。这种氟化药物已被用于治疗埃博拉病毒和 COVID-19。由于 photo-CIDNP 的部分循环反应方案允许多次数据采集,因此平均化进一步提高了 SNR。F 的平均信号增益因子估计在 10 左右。0.39×0.39mm 的面内分辨率能够分析空间变化的极化程度。估计每个体素中最小可检测的法匹拉韦量约为 500pmol。结果表明,F photo-CIDNP 是一种很有前途的方法,可用于非侵入式检测合适的含 F 药物和其他物质含量非常低的化合物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d6d/10794400/b88226cfe81b/41598_2024_51454_Fig1_HTML.jpg

相似文献

2
Low-cost LED-based Photo-CIDNP Enables Biocompatible Hyperpolarization of F for NMR and MRI at 7 T and 4.7 T.
Chemphyschem. 2018 Oct 5;19(19):2453-2456. doi: 10.1002/cphc.201800570. Epub 2018 Jul 13.
3
Molecular features toward high photo-CIDNP hyperpolariztion explored through the oxidocyclization of tryptophan.
Phys Chem Chem Phys. 2021 Mar 21;23(11):6641-6650. doi: 10.1039/d0cp06068b. Epub 2021 Mar 12.
4
EPIC- and CHANCE-HSQC: two 15N-photo-CIDNP-enhanced pulse sequences for the sensitive detection of solvent-exposed tryptophan.
J Magn Reson. 2009 Oct;200(2):207-13. doi: 10.1016/j.jmr.2009.07.001. Epub 2009 Jul 4.
5
Effect of heavy atoms on photochemically induced dynamic nuclear polarization in liquids.
J Magn Reson. 2018 Jan;286:172-187. doi: 10.1016/j.jmr.2017.12.001. Epub 2017 Dec 5.
6
High SNR Acquisitions Improve the Repeatability of Liver Fat Quantification Using Confounder-corrected Chemical Shift-encoded MR Imaging.
Magn Reson Med Sci. 2017 Oct 10;16(4):332-339. doi: 10.2463/mrms.mp.2016-0081. Epub 2017 Feb 13.
7
Ultrafast Fragment Screening Using Photo-Hyperpolarized (CIDNP) NMR.
J Am Chem Soc. 2023 Jun 7;145(22):12066-12080. doi: 10.1021/jacs.3c01392. Epub 2023 May 25.
9
1H photo-CIDNP enhancements in heteronuclear correlation NMR spectroscopy.
J Phys Chem B. 2009 Jun 18;113(24):8310-8. doi: 10.1021/jp901000z.

引用本文的文献

1
Photo-CIDNP for quantification of micromolar analytes in urine.
Commun Chem. 2025 Aug 1;8(1):223. doi: 10.1038/s42004-025-01626-8.
2
Predictions of Steady-State Photo-CIDNP Enhancement by Machine Learning.
J Am Chem Soc. 2025 Aug 6;147(31):27172-27178. doi: 10.1021/jacs.5c07462. Epub 2025 Jul 28.

本文引用的文献

1
Non-classical disproportionation revealed by photo-chemically induced dynamic nuclear polarization NMR.
Magn Reson (Gott). 2021 May 7;2(1):281-290. doi: 10.5194/mr-2-281-2021. eCollection 2021.
2
Spin Dynamics of Flavoproteins.
Int J Mol Sci. 2023 May 4;24(9):8218. doi: 10.3390/ijms24098218.
3
Magnetic resonance imaging at 9.4 T: the Maastricht journey.
MAGMA. 2023 Apr;36(2):159-173. doi: 10.1007/s10334-023-01080-4. Epub 2023 Apr 20.
4
Selective Isotope Labeling and LC-Photo-CIDNP Enable NMR Spectroscopy at Low-Nanomolar Concentration.
J Am Chem Soc. 2022 Jul 6;144(26):11608-11619. doi: 10.1021/jacs.2c01809. Epub 2022 Jun 14.
5
Magnetic sensitivity of cryptochrome 4 from a migratory songbird.
Nature. 2021 Jun;594(7864):535-540. doi: 10.1038/s41586-021-03618-9. Epub 2021 Jun 23.
6
Enabling Clinical Technologies for Hyperpolarized Xenon Magnetic Resonance Imaging and Spectroscopy.
Angew Chem Int Ed Engl. 2021 Oct 4;60(41):22126-22147. doi: 10.1002/anie.202015200. Epub 2021 Jun 9.
7
Photochemically Induced Dynamic Nuclear Polarization of Heteronuclear Singlet Order.
J Phys Chem Lett. 2021 May 20;12(19):4686-4691. doi: 10.1021/acs.jpclett.1c00503. Epub 2021 May 12.
8
Photo-CIDNP in Solid State.
Appl Magn Reson. 2022;53(3-5):521-537. doi: 10.1007/s00723-021-01322-5. Epub 2021 Apr 6.
9
Enhanced nuclear-spin hyperpolarization of amino acids and proteins via reductive radical quenchers.
J Magn Reson. 2021 Mar;324:106912. doi: 10.1016/j.jmr.2021.106912. Epub 2021 Jan 12.
10
Tailored flavoproteins acting as light-driven spin machines pump nuclear hyperpolarization.
Sci Rep. 2020 Oct 29;10(1):18658. doi: 10.1038/s41598-020-75627-z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验