Suppr超能文献

Quinidine but not quinine inhibits in man the oxidative metabolic routes of methoxyphenamine which involve debrisoquine 4-hydroxylase.

作者信息

Muralidharan G, Hawes E M, McKay G, Korchinski E D, Midha K K

机构信息

College of Pharmacy, University of Saskatchewan, Saskatoon, Canada.

出版信息

Eur J Clin Pharmacol. 1991;41(5):471-4. doi: 10.1007/BF00626372.

Abstract

Healthy male volunteers (n = 13) took a single oral dose of 60.3 mg of methoxyphenamine HCl with and without prior administration of either quinidine (250 mg as bisulphate salt) or its diastereomer quinine (300 mg as sulphate salt). Methoxyphenamine and its N-desmethyl, O-desmethyl and aromatic 5-hydroxy metabolites were quantified in the 0-32 h urine. The oxidative routes of methoxyphenamine metabolisms which had been previously shown to involve debrisoquine 4-hydroxylase, namely O-demethylation and 5-hydroxylation were both significantly inhibited by quinidine in the 12 extensive metabolizers. The inhibition was selective in that N-demethylation which does not involve this isozyme was not affected by quinidine. In all but one of these volunteers the methoxyphenamine/O-desmethylmethoxyphenamine ratio changed such that extensive metabolizers could be classified as poor metabolizers due to quinidine pretreatment. No marked change occurred in the renal excretion of methoxyphenamine and its three metabolites either in the extensive metabolizers because of quinine pretreatment or in the poor metabolizer because of treatment with either quinidine or quinine. Thus in the extensive metabolizer phenotype it was demonstrated in one study that enzyme inhibition of quinidine was selective in terms of the metabolic pathways inhibited as well as stereoselective with respect to the inhibitor.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验