Suppr超能文献

以乙酸盐和氢气作为电子供体的比较以及对四氯乙烯(PCE)和三氯乙烯(TCE)还原脱卤的影响

Comparison between acetate and hydrogen as electron donors and implications for the reductive dehalogenation of PCE and TCE.

作者信息

Lee Il-Su, Bae Jae-Ho, McCarty Perry L

机构信息

Department of Environmental Engineering, Inha University, 253 Yonghyundong, Namgu, Inchon, South Korea.

出版信息

J Contam Hydrol. 2007 Oct 30;94(1-2):76-85. doi: 10.1016/j.jconhyd.2007.05.003. Epub 2007 Jun 5.

Abstract

Bioremediation by reductive dehalogenation of groundwater contaminated with tetrachloroethene (PCE) or trichloroethene (TCE) is generally carried out through the addition of a fermentable electron donor such as lactate, benzoate, carbohydrates or vegetable oil. These fermentable donors are converted by fermenting organisms into acetate and hydrogen, either of which might be used by dehalogenating microorganisms. Comparisons were made between H2 and acetate on the rate and extent of reductive dehalogenation of PCE. PCE dehalogenation with H2 alone was complete to ethene, but with acetate alone it generally proceeded only about half as fast and only to cis-1,2-dichloroethene (cDCE). Additionally, acetate was not used as an electron donor in the presence of H2. These findings suggest the fermentable electron donor requirement for PCE dehalogenation to ethene can be reduced up to 50% by separating PCE dehalogenation into two stages, the first of which uses acetate for the conversion of PCE to cDCE, and the second uses H2 for the conversion of cDCE to ethene. This can be implemented with a recycle system in which the fermentable substrate is added down-gradient, where the hydrogen being produced by fermentation effects cDCE conversion into ethene. The acetate produced is recycled up-gradient to achieve PCE conversion into cDCE. With the lower electron donor usage required, potential problems of aquifer clogging, excess methane production, and high groundwater chemical oxygen demand (COD) can be greatly reduced.

摘要

通过还原脱卤作用对受四氯乙烯(PCE)或三氯乙烯(TCE)污染的地下水进行生物修复,通常是通过添加可发酵电子供体来实现的,如乳酸盐、苯甲酸盐、碳水化合物或植物油。这些可发酵供体被发酵微生物转化为乙酸盐和氢气,脱卤微生物可能会利用其中任何一种。对氢气和乙酸盐在PCE还原脱卤的速率和程度方面进行了比较。单独使用氢气时,PCE脱卤完全转化为乙烯,但单独使用乙酸盐时,其反应速度通常仅为前者的一半左右,且仅能转化为顺式-1,2-二氯乙烯(cDCE)。此外,在有氢气存在的情况下,乙酸盐不会被用作电子供体。这些发现表明,通过将PCE脱卤分为两个阶段,可将PCE脱卤至乙烯所需的可发酵电子供体需求降低多达50%,第一阶段使用乙酸盐将PCE转化为cDCE,第二阶段使用氢气将cDCE转化为乙烯。这可以通过一个循环系统来实现,在该系统中,可发酵底物在下游添加,发酵产生的氢气促使cDCE转化为乙烯。产生的乙酸盐被循环至上游,以实现PCE转化为cDCE。由于所需的电子供体使用量较低,含水层堵塞、过量产生甲烷以及高地下水化学需氧量(COD)等潜在问题可大大减少。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验