Suppr超能文献

通过人肌醇多磷酸激酶1整合肌醇磷酸信号通路。

Integration of inositol phosphate signaling pathways via human ITPK1.

作者信息

Chamberlain Philip P, Qian Xun, Stiles Amanda R, Cho Jaiesoon, Jones David H, Lesley Scott A, Grabau Elizabeth A, Shears Stephen B, Spraggon Glen

机构信息

Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA.

出版信息

J Biol Chem. 2007 Sep 21;282(38):28117-25. doi: 10.1074/jbc.M703121200. Epub 2007 Jul 6.

Abstract

Inositol 1,3,4-trisphosphate 5/6-kinase (ITPK1) is a reversible, poly-specific inositol phosphate kinase that has been implicated as a modifier gene in cystic fibrosis. Upon activation of phospholipase C at the plasma membrane, inositol 1,4,5-trisphosphate enters the cytosol and is inter-converted by an array of kinases and phosphatases into other inositol phosphates with diverse and critical cellular activities. In mammals it has been established that inositol 1,3,4-trisphosphate, produced from inositol 1,4,5-trisphosphate, lies in a branch of the metabolic pathway that is separate from inositol 3,4,5,6-tetrakisphosphate, which inhibits plasma membrane chloride channels. We have determined the molecular mechanism for communication between these two pathways, showing that phosphate is transferred between inositol phosphates via ITPK1-bound nucleotide. Intersubstrate phosphate transfer explains how competing substrates are able to stimulate each others' catalysis by ITPK1. We further show that these features occur in the human protein, but not in plant or protozoan homologues. The high resolution structure of human ITPK1 identifies novel secondary structural features able to impart substrate selectivity and enhance nucleotide binding, thereby promoting intersubstrate phosphate transfer. Our work describes a novel mode of substrate regulation and provides insight into the enzyme evolution of a signaling mechanism from a metabolic role.

摘要

肌醇1,3,4-三磷酸5/6-激酶(ITPK1)是一种可逆的、多特异性的肌醇磷酸激酶,已被认为是囊性纤维化中的修饰基因。当质膜上的磷脂酶C被激活时,肌醇1,4,5-三磷酸进入细胞质,并通过一系列激酶和磷酸酶相互转化为具有不同关键细胞活性的其他肌醇磷酸。在哺乳动物中,已经确定由肌醇1,4,5-三磷酸产生的肌醇1,3,4-三磷酸位于与肌醇3,4,5,6-四磷酸不同的代谢途径分支中,肌醇3,4,5,6-四磷酸会抑制质膜氯离子通道。我们已经确定了这两条途径之间通讯的分子机制,表明磷酸通过与ITPK1结合的核苷酸在肌醇磷酸之间转移。底物间磷酸转移解释了竞争性底物如何能够刺激ITPK1对彼此的催化作用。我们进一步表明,这些特征存在于人类蛋白质中,但不存在于植物或原生动物的同源物中。人类ITPK1的高分辨率结构确定了能够赋予底物选择性并增强核苷酸结合从而促进底物间磷酸转移的新二级结构特征。我们的工作描述了一种新的底物调节模式,并为从代谢作用的信号传导机制的酶进化提供了见解。

相似文献

1
Integration of inositol phosphate signaling pathways via human ITPK1.
J Biol Chem. 2007 Sep 21;282(38):28117-25. doi: 10.1074/jbc.M703121200. Epub 2007 Jul 6.
3
Biochemical and biophysical characterization of inositol-tetrakisphosphate 1-kinase inhibitors.
J Biol Chem. 2025 Mar;301(3):108274. doi: 10.1016/j.jbc.2025.108274. Epub 2025 Feb 6.
4
ITPK1 mediates the lipid-independent synthesis of inositol phosphates controlled by metabolism.
Proc Natl Acad Sci U S A. 2019 Dec 3;116(49):24551-24561. doi: 10.1073/pnas.1911431116. Epub 2019 Nov 21.
5
Molecular basis for the integration of inositol phosphate signaling pathways via human ITPK1.
Adv Enzyme Regul. 2009;49(1):87-96. doi: 10.1016/j.advenzreg.2008.12.008. Epub 2009 Jan 3.
10
ITPK1 is an InsP/ADP phosphotransferase that controls phosphate signaling in Arabidopsis.
Mol Plant. 2021 Nov 1;14(11):1864-1880. doi: 10.1016/j.molp.2021.07.011. Epub 2021 Jul 15.

引用本文的文献

1
Inositol Phosphate Kinase Architecture: Practical Approaches and Lessons Learned.
Methods Mol Biol. 2025;2972:171-187. doi: 10.1007/978-1-0716-4799-8_13.
2
Biochemical and biophysical characterization of inositol-tetrakisphosphate 1-kinase inhibitors.
J Biol Chem. 2025 Mar;301(3):108274. doi: 10.1016/j.jbc.2025.108274. Epub 2025 Feb 6.
3
Identification and validation of aging-related genes in heart failure based on multiple machine learning algorithms.
Front Immunol. 2024 Apr 15;15:1367235. doi: 10.3389/fimmu.2024.1367235. eCollection 2024.
4
Crystal Structure and Enzymology of Inositol Tris/Tetrakisphosphate Kinase 1 (ITPK1).
Biochemistry. 2024 Jan 2;63(1):42-52. doi: 10.1021/acs.biochem.3c00404. Epub 2023 Dec 26.
7
Stable Isotopomers of Inositol Uncover a Complex MINPP1-Dependent Inositol Phosphate Network.
ACS Cent Sci. 2022 Dec 28;8(12):1683-1694. doi: 10.1021/acscentsci.2c01032. Epub 2022 Dec 5.
9
Structural and catalytic analyses of the InsP kinase activities of higher plant ITPKs.
FASEB J. 2022 Jul;36(7):e22380. doi: 10.1096/fj.202200393R.
10
Inositol Phosphates and Retroviral Assembly: A Cellular Perspective.
Viruses. 2021 Dec 15;13(12):2516. doi: 10.3390/v13122516.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
4
On the contribution of stereochemistry to human ITPK1 specificity: Ins(1,4,5,6)P4 is not a physiologic substrate.
FEBS Lett. 2006 Jan 9;580(1):324-30. doi: 10.1016/j.febslet.2005.12.016. Epub 2005 Dec 19.
5
Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing.
Science. 2005 Sep 2;309(5740):1534-9. doi: 10.1126/science.1113150.
7
The Ins(1,3,4)P3 5/6-kinase/Ins(3,4,5,6)P4 1-kinase is not a protein kinase.
Biochem J. 2005 Jul 15;389(Pt 2):389-95. doi: 10.1042/BJ20050297.
8
Phosphorylation of proteins by inositol pyrophosphates.
Science. 2004 Dec 17;306(5704):2101-5. doi: 10.1126/science.1103344.
9
Cell signaling by a physiologically reversible inositol phosphate kinase/phosphatase.
Adv Enzyme Regul. 2004;44:265-77. doi: 10.1016/j.advenzreg.2004.02.002.
10
Coot: model-building tools for molecular graphics.
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32. doi: 10.1107/S0907444904019158. Epub 2004 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验