Chamberlain Philip P, Qian Xun, Stiles Amanda R, Cho Jaiesoon, Jones David H, Lesley Scott A, Grabau Elizabeth A, Shears Stephen B, Spraggon Glen
Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA.
J Biol Chem. 2007 Sep 21;282(38):28117-25. doi: 10.1074/jbc.M703121200. Epub 2007 Jul 6.
Inositol 1,3,4-trisphosphate 5/6-kinase (ITPK1) is a reversible, poly-specific inositol phosphate kinase that has been implicated as a modifier gene in cystic fibrosis. Upon activation of phospholipase C at the plasma membrane, inositol 1,4,5-trisphosphate enters the cytosol and is inter-converted by an array of kinases and phosphatases into other inositol phosphates with diverse and critical cellular activities. In mammals it has been established that inositol 1,3,4-trisphosphate, produced from inositol 1,4,5-trisphosphate, lies in a branch of the metabolic pathway that is separate from inositol 3,4,5,6-tetrakisphosphate, which inhibits plasma membrane chloride channels. We have determined the molecular mechanism for communication between these two pathways, showing that phosphate is transferred between inositol phosphates via ITPK1-bound nucleotide. Intersubstrate phosphate transfer explains how competing substrates are able to stimulate each others' catalysis by ITPK1. We further show that these features occur in the human protein, but not in plant or protozoan homologues. The high resolution structure of human ITPK1 identifies novel secondary structural features able to impart substrate selectivity and enhance nucleotide binding, thereby promoting intersubstrate phosphate transfer. Our work describes a novel mode of substrate regulation and provides insight into the enzyme evolution of a signaling mechanism from a metabolic role.
肌醇1,3,4-三磷酸5/6-激酶(ITPK1)是一种可逆的、多特异性的肌醇磷酸激酶,已被认为是囊性纤维化中的修饰基因。当质膜上的磷脂酶C被激活时,肌醇1,4,5-三磷酸进入细胞质,并通过一系列激酶和磷酸酶相互转化为具有不同关键细胞活性的其他肌醇磷酸。在哺乳动物中,已经确定由肌醇1,4,5-三磷酸产生的肌醇1,3,4-三磷酸位于与肌醇3,4,5,6-四磷酸不同的代谢途径分支中,肌醇3,4,5,6-四磷酸会抑制质膜氯离子通道。我们已经确定了这两条途径之间通讯的分子机制,表明磷酸通过与ITPK1结合的核苷酸在肌醇磷酸之间转移。底物间磷酸转移解释了竞争性底物如何能够刺激ITPK1对彼此的催化作用。我们进一步表明,这些特征存在于人类蛋白质中,但不存在于植物或原生动物的同源物中。人类ITPK1的高分辨率结构确定了能够赋予底物选择性并增强核苷酸结合从而促进底物间磷酸转移的新二级结构特征。我们的工作描述了一种新的底物调节模式,并为从代谢作用的信号传导机制的酶进化提供了见解。