Suppr超能文献

一项关于碳酸锂对小鼠脑信使核糖核酸分子药理学的微阵列基因表达研究,以了解情绪稳定和双相情感障碍治疗的神经生物学机制。

A microarray gene expression study of the molecular pharmacology of lithium carbonate on mouse brain mRNA to understand the neurobiology of mood stabilization and treatment of bipolar affective disorder.

作者信息

McQuillin Andrew, Rizig Mie, Gurling Hugh M D

机构信息

Molecular Psychiatry Laboratory, Department of Mental Health Sciences, Windeyer Institute of Medical Sciences, Royal Free and University College Medical School, London, UK.

出版信息

Pharmacogenet Genomics. 2007 Aug;17(8):605-17. doi: 10.1097/FPC.0b013e328011b5b2.

Abstract

OBJECTIVES

Lithium is the most widely prescribed and effective mood-stabilizing drug used for the treatment of bipolar affective disorder. To understand how lithium produces changes in the brain, we studied brain mRNA from 10 mice after treatment with lithium and compared them with 10 untreated controls.

METHODS

We used the MAS 5.0, Smudge miner, GC-RMA and FDR-AME packages of software (Bioconductor, Seattle, Washington, USA) to determine gene expression changes using Affymetrix MOE430E 2.0 microarrays after 2 weeks of lithium treatment.

RESULTS

We used both a false discovery rate (FDR-AME) assessment of significance and the Bonferroni method to correct for the possibility of false-positive changes in gene expression among the 39,000 genes present in each array. Our primary method of analysis was to use t-tests on normalized gene expression intensities. By using a Bonferroni correction of P<1.28x10(-6), we found that 121 genes showed significant changes in expression. The three genes with the most changed mRNA expression were alanine-glyoxylate aminotransferase 2-like 1 (Agxt2l1), c-mer proto-oncogene tyrosine kinase (Mertk) and sulfotransferase family 1A phenol-preferring member 1 (Sult1a1). Also among the group of 121 genes with significant changes in gene expression that survived Bonferroni correction () were the genes encoding the Per2 period gene (Per2 P=1.33x10(-8), 2.47-fold change), the metabotropic glutamate receptor (Grm3, P=9.48x10(-7), 0.7-fold change) and secretogranin II (Scg2, P=9.48x10(-7), 1.28-fold change) as well as several myelin-related genes and protein phosphatases. By taking a significance value of P<0.05 without Bonferroni or FDR-AME correction, we identified a total of 4474 genes showing changed mRNA expression in response to lithium. FDR-AME analysis showed that 1027 out of these 4474 genes were significantly changed in expression. Among the mRNAs that were significantly changed with t-tests and FDR-AME were several that had already been implicated in response to lithium such as increased brain-derived neurotrophic factor mRNA ( t-test P=0.0008-0.0005, FDR-AME P=0.0396-0.0393, 1.44-fold change) beta-phosphatidylinositol transfer protein (Pitpnb, t-test P<0.0000, FDR-AME P=0.003, 1.26-fold change) and inositol (myo)-1(or 4)-monophosphatase 1(Impa1, t test P<0.0000, FDR-AME P=0.004, 1.22-fold change). Of interest in relation to the side effect of hypothyroidism, which is caused by long-term lithium treatment was the fact that we observed changes in mRNA expression in five genes related to thyroxine metabolism. These included deiodinase (Dio2 t-test P=0.000003-0.004, FDR-AME P=0.0048-0.061, 1.53-fold change) and thyroid hormone receptor interactor 12 (Trip12, t-test P=0.003, FDR-AME P=0.075, 1.19-fold change). Of relevance to multiple sclerosis was the observed upregulation of the long isoform of myelin basic protein (t-test P=0.00013, FDR-AME P=0.0169). Changes in mRNA expression were found in 45 genes related to phosphatidylinositol metabolism using uncorrected t-tests but only 13 genes after FDR-AME. Thus, our work confirms the considerable previous research implicating this system. Gene ontology analysis showed that lithium significantly affected a cluster of processes associated with nucleotide and nucleoside metabolism. The analysis showed that there were 170 genes expressing RNA described as having ATP-binding or ATPase activity that had changed mRNA expression. The changes found have been discussed in relation to previous experimental work on the pharmacology of lithium.

摘要

目的

锂是治疗双相情感障碍最常用且有效的心境稳定剂。为了解锂如何在大脑中产生变化,我们研究了10只经锂治疗的小鼠的脑信使核糖核酸(mRNA),并将其与10只未治疗的对照小鼠进行比较。

方法

我们使用软件(美国华盛顿州西雅图市的Bioconductor)的MAS 5.0、Smudge miner、GC - RMA和FDR - AME程序包,在锂治疗2周后,使用Affymetrix MOE430E 2.0微阵列确定基因表达变化。

结果

我们使用错误发现率(FDR - AME)显著性评估和Bonferroni方法,对每个阵列中39000个基因间基因表达出现假阳性变化的可能性进行校正。我们的主要分析方法是对标准化基因表达强度进行t检验。通过使用P<1.28×10⁻⁶的Bonferroni校正,我们发现121个基因的表达有显著变化。信使核糖核酸表达变化最大的三个基因是丙氨酸 - 乙醛酸氨基转移酶2样1(Agxt2l1)、c - 梅原癌基因酪氨酸激酶(Mertk)和磺基转移酶家族1A酚优先成员1(Sult1a1)。在经Bonferroni校正后基因表达有显著变化的121个基因组中,还包括编码Per2周期基因(Per2,P = 1.33×10⁻⁸,变化2.47倍)、代谢型谷氨酸受体(Grm3,P = 9.48×10⁻⁷,变化0.7倍)和分泌粒蛋白II(Scg2,P = 9.48×10⁻⁷,变化1.28倍)的基因,以及几个与髓鞘相关的基因和蛋白磷酸酶。在未进行Bonferroni或FDR - AME校正的情况下,取显著性值P<0.05,我们共鉴定出4474个因锂处理而信使核糖核酸表达发生变化的基因。FDR - AME分析表明,这4474个基因中有1027个基因的表达有显著变化。在经t检验和FDR - AME分析后信使核糖核酸有显著变化的基因中,有几个基因之前已被证实与锂反应有关,如脑源性神经营养因子信使核糖核酸增加(t检验P = 0.0008 - 0.0005,FDR - AME P = 0.0396 - 0.0393,变化1.44倍)、β - 磷脂酰肌醇转移蛋白(Pitpnb,t检验P<0.0000,FDR - AME P = 0.003,变化1.26倍)和肌醇(肌醇)-1(或4)-单磷酸酶1(Impa1,t检验P<0.0000,FDR - AME P = 0.004,变化1.22倍)。与长期锂治疗引起的甲状腺功能减退副作用相关的是,我们观察到5个与甲状腺素代谢相关的基因的信使核糖核酸表达发生了变化。这些基因包括脱碘酶(Dio2,t检验P = 0.000003 - 0.004,FDR - AME P = 0.0048 - 0.061,变化1.53倍)和甲状腺激素受体相互作用蛋白12(Trip12,t检验P = 0.003,FDR - AME P = 0.075,变化1.19倍)。与多发性硬化症相关的是观察到髓鞘碱性蛋白长亚型的上调(t检验P = 0.00013,FDR - AME P = 0.0169)。使用未校正的t检验发现45个与磷脂酰肌醇代谢相关的基因的信使核糖核酸表达有变化,但经FDR - AME分析后只有13个基因有变化。因此,我们的工作证实了之前大量相关的研究。基因本体分析表明,锂显著影响了一组与核苷酸和核苷代谢相关的过程。分析表明,有170个表达被描述为具有ATP结合或ATP酶活性的RNA的基因,其信使核糖核酸表达发生了变化。所发现的这些变化已结合之前关于锂药理学的实验工作进行了讨论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验