Suppr超能文献

使用可变形体积模型在三维乳腺超声中进行胸壁分割。

Chestwall segmentation in 3D breast ultrasound using a deformable volume model.

作者信息

Huisman Henkjan, Karssemeijer Nico

机构信息

Radboud University Medical Centre, Nijmegen, The Netherlands.

出版信息

Inf Process Med Imaging. 2007;20:245-56. doi: 10.1007/978-3-540-73273-0_21.

Abstract

A deformable volume segmentation method is proposed to detect the breast parenchyma in frontal scanned 3D whole breast ultrasound. Deformable volumes are a viable alternative to the deformable surface paradigm in noisy images with poorly defined object boundaries. A deformable ultrasound volume model was developed containing breast, rib, intercostal space and thoracic shadowing. Using prior knowledge about grey value statistics and shape the parameterized model deforms by optimization to match an ultrasound scan. Additionally a rib shadow enhancement filter was developed based on a Hessian sheet detector. An ROC chestwall detection study on 88 multi-center scans (20 non-visible chestwalls) showed a significant accuracy which improved strongly using the sheet detector. The results show the potential of our methodology to extract breast parenchyma which could help reduce false positives in subsequent computer aided lesion detection.

摘要

提出了一种可变形体积分割方法,用于在正面扫描的3D全乳腺超声中检测乳腺实质。在具有定义不明确的对象边界的噪声图像中,可变形体积是可变形表面范式的可行替代方案。开发了一种包含乳房、肋骨、肋间空间和胸部阴影的可变形超声体积模型。利用关于灰度值统计和形状的先验知识,参数化模型通过优化变形以匹配超声扫描。此外,基于黑塞矩阵片检测器开发了一种肋骨阴影增强滤波器。对88次多中心扫描(20次不可见胸壁)进行的ROC胸壁检测研究显示出显著的准确性,使用片检测器后准确性有了很大提高。结果表明我们的方法在提取乳腺实质方面的潜力,这有助于减少后续计算机辅助病变检测中的假阳性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验