Suppr超能文献

基于多域特征的全自动乳腺超声图像分割方法。

Completely automated segmentation approach for breast ultrasound images using multiple-domain features.

机构信息

Department of Computer Science, Utah State University, Logan, UT 84322, USA.

出版信息

Ultrasound Med Biol. 2012 Feb;38(2):262-75. doi: 10.1016/j.ultrasmedbio.2011.10.022.

Abstract

Lesion segmentation is a challenging task for computer aided diagnosis systems. In this article, we propose a novel and fully automated segmentation approach for breast ultrasound (BUS) images. The major contributions of this work are: an efficient region-of-interest (ROI) generation method is developed and new features to characterize lesion boundaries are proposed. After a ROI is located automatically, two newly proposed lesion features (phase in max-energy orientation and radial distance), combined with a traditional intensity-and-texture feature, are utilized to detect the lesion by a trained artificial neural network. The proposed features are tested on a database of 120 images and the experimental results prove their strong distinguishing ability. Compared with other breast ultrasound segmentation methods, the proposed method improves the TP rate from 84.9% to 92.8%, similarity rate from 79.0% to 83.1% and reduces the FP rate from 14.1% to 12.0%, using the same database. In addition, sensitivity analysis demonstrates the robustness of the proposed method.

摘要

病变分割是计算机辅助诊断系统的一个具有挑战性的任务。在本文中,我们提出了一种新的、完全自动化的乳腺超声 (BUS) 图像分割方法。这项工作的主要贡献有:开发了一种高效的感兴趣区域 (ROI) 生成方法,并提出了新的特征来描述病变边界。在自动定位 ROI 后,两个新提出的病变特征(最大能量方向的相位和径向距离),结合传统的强度和纹理特征,被用于通过训练好的人工神经网络来检测病变。所提出的特征在 120 张图像的数据库上进行了测试,实验结果证明了它们的强区分能力。与其他乳腺超声分割方法相比,使用相同的数据库,该方法将 TP 率从 84.9%提高到 92.8%,相似率从 79.0%提高到 83.1%,并将 FP 率从 14.1%降低到 12.0%。此外,敏感性分析证明了该方法的稳健性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验