Suppr超能文献

基于威沙特混合模型和稀疏反卷积的扩散磁共振成像多纤维重建

Multi-fiber reconstruction from diffusion MRI using mixture of Wisharts and sparse deconvolution.

作者信息

Jian Bing, Vemuri Baba C

机构信息

Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, USA.

出版信息

Inf Process Med Imaging. 2007;20:384-95. doi: 10.1007/978-3-540-73273-0_32.

Abstract

In this paper, we present a novel continuous mixture of diffusion tensors model for the diffusion-weighted MR signal attenuation. The relationship between the mixing distribution and the MR signal attenuation is shown to be given by the Laplace transform defined on the space of positive definite diffusion tensors. The mixing distribution when parameterized by a mixture of Wishart distributions (MOW) is shown to possess a closed form expression for its Laplace transform, called the Rigaut-type function, which provides an alternative to the Stejskal-Tanner model for the MR signal decay. Our model naturally leads to a deconvolution formulation for multi-fiber reconstruction. This deconvolution formulation requires the solution to an ill-conditioned linear system. We present several deconvolution methods and show that the nonnegative least squares method outperforms all others in achieving accurate and sparse solutions in the presence of noise. The performance of our multi-fiber reconstruction method using the MOW model is demonstrated on both synthetic and real data along with comparisons with state-of-the-art techniques.

摘要

在本文中,我们提出了一种用于扩散加权磁共振信号衰减的新型连续扩散张量混合模型。混合分布与磁共振信号衰减之间的关系由在正定扩散张量空间上定义的拉普拉斯变换给出。当用威沙特分布混合(MOW)进行参数化时,混合分布的拉普拉斯变换具有封闭形式的表达式,称为里 Gaut 型函数,它为磁共振信号衰减提供了替代 Stejskal-Tanner 模型的方法。我们的模型自然地导致了用于多纤维重建的反卷积公式。这种反卷积公式需要求解一个病态线性系统。我们提出了几种反卷积方法,并表明非负最小二乘法在存在噪声的情况下实现准确和稀疏解方面优于所有其他方法。使用 MOW 模型的多纤维重建方法的性能在合成数据和真实数据上都得到了验证,并与现有技术进行了比较。

相似文献

5
Adaptive kernels for multi-fiber reconstruction.用于多纤维重建的自适应内核
Inf Process Med Imaging. 2009;21:338-49. doi: 10.1007/978-3-642-02498-6_28.
6
Fast orientation mapping from HARDI.基于高分辨率扩散成像的快速取向映射
Med Image Comput Comput Assist Interv. 2005;8(Pt 1):156-63. doi: 10.1007/11566465_20.
7
Probabilistic fiber tracking using particle filtering.使用粒子滤波的概率纤维追踪
Med Image Comput Comput Assist Interv. 2007;10(Pt 2):144-52. doi: 10.1007/978-3-540-75759-7_18.
8
Nonlinear registration of diffusion MR images based on fiber bundles.基于纤维束的扩散磁共振图像非线性配准
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):351-8. doi: 10.1007/978-3-540-75757-3_43.
10
Uncertainty in white matter fiber tractography.白质纤维束成像中的不确定性。
Med Image Comput Comput Assist Interv. 2005;8(Pt 1):107-14. doi: 10.1007/11566465_14.

引用本文的文献

5
Broca's area - thalamic connectivity.布洛卡区-丘脑连接性
Brain Lang. 2015 Feb;141:80-8. doi: 10.1016/j.bandl.2014.12.001. Epub 2014 Dec 30.
6
Multi-shell diffusion signal recovery from sparse measurements.从稀疏测量中恢复多壳扩散信号
Med Image Anal. 2014 Oct;18(7):1143-56. doi: 10.1016/j.media.2014.06.003. Epub 2014 Jul 5.
7
Imaging white matter in human brainstem.人脑干的白质成像。
Front Hum Neurosci. 2013 Jul 24;7:400. doi: 10.3389/fnhum.2013.00400. eCollection 2013.

本文引用的文献

7
Q-ball imaging.Q球成像
Magn Reson Med. 2004 Dec;52(6):1358-72. doi: 10.1002/mrm.20279.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验