Suppr超能文献

用于人类大脑多维扩散磁共振成像的Q空间轨迹成像

Q-space trajectory imaging for multidimensional diffusion MRI of the human brain.

作者信息

Westin Carl-Fredrik, Knutsson Hans, Pasternak Ofer, Szczepankiewicz Filip, Özarslan Evren, van Westen Danielle, Mattisson Cecilia, Bogren Mats, O'Donnell Lauren J, Kubicki Marek, Topgaard Daniel, Nilsson Markus

机构信息

Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Biomedical Engineering, Linköping University, Linköping, Sweden.

Department of Biomedical Engineering, Linköping University, Linköping, Sweden.

出版信息

Neuroimage. 2016 Jul 15;135:345-62. doi: 10.1016/j.neuroimage.2016.02.039. Epub 2016 Feb 23.

Abstract

This work describes a new diffusion MR framework for imaging and modeling of microstructure that we call q-space trajectory imaging (QTI). The QTI framework consists of two parts: encoding and modeling. First we propose q-space trajectory encoding, which uses time-varying gradients to probe a trajectory in q-space, in contrast to traditional pulsed field gradient sequences that attempt to probe a point in q-space. Then we propose a microstructure model, the diffusion tensor distribution (DTD) model, which takes advantage of additional information provided by QTI to estimate a distributional model over diffusion tensors. We show that the QTI framework enables microstructure modeling that is not possible with the traditional pulsed gradient encoding as introduced by Stejskal and Tanner. In our analysis of QTI, we find that the well-known scalar b-value naturally extends to a tensor-valued entity, i.e., a diffusion measurement tensor, which we call the b-tensor. We show that b-tensors of rank 2 or 3 enable estimation of the mean and covariance of the DTD model in terms of a second order tensor (the diffusion tensor) and a fourth order tensor. The QTI framework has been designed to improve discrimination of the sizes, shapes, and orientations of diffusion microenvironments within tissue. We derive rotationally invariant scalar quantities describing intuitive microstructural features including size, shape, and orientation coherence measures. To demonstrate the feasibility of QTI on a clinical scanner, we performed a small pilot study comparing a group of five healthy controls with five patients with schizophrenia. The parameter maps derived from QTI were compared between the groups, and 9 out of the 14 parameters investigated showed differences between groups. The ability to measure and model the distribution of diffusion tensors, rather than a quantity that has already been averaged within a voxel, has the potential to provide a powerful paradigm for the study of complex tissue architecture.

摘要

这项工作描述了一种用于微观结构成像和建模的新扩散磁共振框架,我们称之为q空间轨迹成像(QTI)。QTI框架由两部分组成:编码和建模。首先,我们提出了q空间轨迹编码,它使用随时间变化的梯度来探测q空间中的一条轨迹,这与传统的脉冲场梯度序列不同,传统序列试图探测q空间中的一个点。然后,我们提出了一个微观结构模型,即扩散张量分布(DTD)模型,该模型利用QTI提供的额外信息来估计扩散张量上的分布模型。我们表明,QTI框架能够实现传统的由斯泰伊卡尔和坦纳引入的脉冲梯度编码所无法实现的微观结构建模。在我们对QTI的分析中,我们发现著名的标量b值自然地扩展为一个张量值实体,即一个扩散测量张量,我们称之为b张量。我们表明,二阶或三阶b张量能够根据二阶张量(扩散张量)和四阶张量来估计DTD模型的均值和协方差。QTI框架旨在提高对组织内扩散微环境的大小、形状和方向的辨别能力。我们推导了描述直观微观结构特征的旋转不变标量,包括大小、形状和方向相干度量。为了证明QTI在临床扫描仪上的可行性,我们进行了一项小型试点研究,比较了一组五名健康对照者和五名精神分裂症患者。比较了两组从QTI得出的参数图,在所研究的14个参数中,有9个参数在两组之间显示出差异。测量和建模扩散张量的分布,而不是已经在体素内平均的量,有可能为研究复杂组织结构提供一个强大的范例。

相似文献

3
..
Neuroimage. 2021 Sep;238:118198. doi: 10.1016/j.neuroimage.2021.118198. Epub 2021 May 21.

引用本文的文献

1
Diffusivity-limited q-space trajectory imaging.扩散率受限的q空间轨迹成像
Magn Reson Lett. 2023 Jan 6;3(2):187-196. doi: 10.1016/j.mrl.2022.12.003. eCollection 2023 May.
6
Denoising diffusion MRI: Considerations and implications for analysis.去噪扩散磁共振成像:分析的考量与影响
Imaging Neurosci (Camb). 2024 Jan 9;2. doi: 10.1162/imag_a_00060. eCollection 2024.

本文引用的文献

1
9
Flow-compensated intravoxel incoherent motion diffusion imaging.血流补偿体素内不相干运动扩散成像
Magn Reson Med. 2015 Aug;74(2):410-9. doi: 10.1002/mrm.25410. Epub 2014 Aug 12.
10
Double-pulsed diffusional kurtosis imaging.双脉冲扩散峰度成像
NMR Biomed. 2014 Feb 20. doi: 10.1002/nbm.3094.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验