Stough Joshua V, Broadhurst Robert E, Pizer Stephen M, Chaney Edward L
Medical Image Display & Analysis Group (MIDAG), University of North Carolina, Chapel Hill NC 27599, USA.
Inf Process Med Imaging. 2007;20:532-43. doi: 10.1007/978-3-540-73273-0_44.
Automated medical image segmentation is a challenging task that benefits from the use of effective image appearance models. In this paper, we compare appearance models at three regional scales for statistically characterizing image intensity near object boundaries in the context of segmentation via deformable models. The three models capture appearance in the form of regional intensity quantile functions. These distribution-based regional image descriptors are amenable to Euclidean methods such as principal component analysis, which we use to build the statistical appearance models. The first model uses two regions, the interior and exterior of the organ of interest. The second model accounts for exterior inhomogeneity by clustering on object-relative local intensity quantile functions to determine tissue-consistent regions relative to the organ boundary. The third model analyzes these image descriptors per geometrically defined local region. To evaluate the three models, we present segmentation results on bladders and prostates in CT in the context of day-to-day adaptive radiotherapy for the treatment of prostate cancer. Results show improved segmentations with more local regions, probably because smaller regions better represent local inhomogeneity in the intensity distribution near the organ boundary.
自动医学图像分割是一项具有挑战性的任务,受益于有效图像外观模型的使用。在本文中,我们在三个区域尺度上比较外观模型,以便在通过可变形模型进行分割的背景下,对物体边界附近的图像强度进行统计表征。这三个模型以区域强度分位数函数的形式捕捉外观。这些基于分布的区域图像描述符适用于诸如主成分分析之类的欧几里得方法,我们用其构建统计外观模型。第一个模型使用两个区域,即感兴趣器官的内部和外部。第二个模型通过对与物体相关的局部强度分位数函数进行聚类来考虑外部不均匀性,以确定相对于器官边界的组织一致区域。第三个模型针对几何定义的局部区域分析这些图像描述符。为了评估这三个模型,我们展示了在前列腺癌日常自适应放射治疗背景下,CT图像中膀胱和前列腺的分割结果。结果表明,使用更多局部区域时分割效果有所改善,这可能是因为较小区域能更好地表示器官边界附近强度分布中的局部不均匀性。