Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA.
Med Phys. 2012 Apr;39(4):2214-28. doi: 10.1118/1.3696376.
Prostate gland segmentation is a critical step in prostate radiotherapy planning, where dose plans are typically formulated on CT. Pretreatment MRI is now beginning to be acquired at several medical centers. Delineation of the prostate on MRI is acknowledged as being significantly simpler to perform, compared to delineation on CT. In this work, the authors present a novel framework for building a linked statistical shape model (LSSM), a statistical shape model (SSM) that links the shape variation of a structure of interest (SOI) across multiple imaging modalities. This framework is particularly relevant in scenarios where accurate boundary delineations of the SOI on one of the modalities may not be readily available, or difficult to obtain, for training a SSM. In this work the authors apply the LSSM in the context of multimodal prostate segmentation for radiotherapy planning, where the prostate is concurrently segmented on MRI and CT.
The framework comprises a number of logically connected steps. The first step utilizes multimodal registration of MRI and CT to map 2D boundary delineations of the prostate from MRI onto corresponding CT images, for a set of training studies. Hence, the scheme obviates the need for expert delineations of the gland on CT for explicitly constructing a SSM for prostate segmentation on CT. The delineations of the prostate gland on MRI and CT allows for 3D reconstruction of the prostate shape which facilitates the building of the LSSM. In order to perform concurrent prostate MRI and CT segmentation using the LSSM, the authors employ a region-based level set approach where the authors deform the evolving prostate boundary to simultaneously fit to MRI and CT images in which voxels are classified to be either part of the prostate or outside the prostate. The classification is facilitated by using a combination of MRI-CT probabilistic spatial atlases and a random forest classifier, driven by gradient and Haar features.
The authors acquire a total of 20 MRI-CT patient studies and use the leave-one-out strategy to train and evaluate four different LSSMs. First, a fusion-based LSSM (fLSSM) is built using expert ground truth delineations of the prostate on MRI alone, where the ground truth for the gland on CT is obtained via coregistration of the corresponding MRI and CT slices. The authors compare the fLSSM against another LSSM (xLSSM), where expert delineations of the gland on both MRI and CT are employed in the model building; xLSSM representing the idealized LSSM. The authors also compare the fLSSM against an exclusive CT-based SSM (ctSSM), built from expert delineations of the gland on CT alone. In addition, two LSSMs trained using trainee delineations (tLSSM) on CT are compared with the fLSSM. The results indicate that the xLSSM, tLSSMs, and the fLSSM perform equivalently, all of them out-performing the ctSSM.
The fLSSM provides an accurate alternative to SSMs that require careful expert delineations of the SOI that may be difficult or laborious to obtain. Additionally, the fLSSM has the added benefit of providing concurrent segmentations of the SOI on multiple imaging modalities.
前列腺分割是前列腺放射治疗计划的关键步骤,通常在 CT 上制定剂量计划。现在,一些医疗中心开始在治疗前获取 MRI。MRI 上的前列腺勾画被认为比 CT 上的勾画要简单得多。在这项工作中,作者提出了一种新的框架,用于构建链接统计形状模型(LSSM),这是一种链接多个成像模式下感兴趣结构(SOI)形状变化的统计形状模型(SSM)。在一个模态上准确勾画 SOI 的边界可能不容易获得或难以获得的情况下,该框架特别相关,因此无法用于训练 SSM。在这项工作中,作者将 LSSM 应用于放射治疗计划中的多模态前列腺分割,在该计划中,同时在 MRI 和 CT 上对前列腺进行分割。
该框架由几个逻辑上连接的步骤组成。第一步利用 MRI 和 CT 的多模态配准,将 MRI 上的前列腺 2D 边界勾画映射到一组训练研究的相应 CT 图像上。因此,该方案避免了在 CT 上对腺体进行专家勾画,以明确构建用于 CT 上前列腺分割的 SSM。在 MRI 和 CT 上勾画前列腺可以重建前列腺形状,从而方便构建 LSSM。为了使用 LSSM 同时进行前列腺 MRI 和 CT 分割,作者采用基于区域的水平集方法,该方法使演化的前列腺边界变形,以同时拟合 MRI 和 CT 图像,其中体素被分类为前列腺内或前列腺外。通过使用 MRI-CT 概率空间图谱和基于梯度和 Haar 特征的随机森林分类器的组合来实现分类。
作者共获得 20 例 MRI-CT 患者研究,并采用留一法策略对四种不同的 LSSM 进行训练和评估。首先,使用仅基于 MRI 的专家前列腺勾画构建融合 LSSM(fLSSM),其中 CT 上的腺体的真实边界通过相应的 MRI 和 CT 切片的配准获得。作者将 fLSSM 与另一个 LSSM(xLSSM)进行比较,xLSSM 在模型构建中使用了对 MRI 和 CT 上腺体的专家勾画;xLSSM 代表理想化的 LSSM。作者还将 fLSSM 与仅基于 CT 上的专家勾画构建的 CT 专用 SSM(ctSSM)进行比较。此外,作者还比较了基于 CT 上专家勾画训练的两个 LSSM(tLSSM)与 fLSSM 的性能。结果表明,xLSSM、tLSSM 和 fLSSM 的性能相当,均优于 ctSSM。
fLSSM 为 SSM 提供了一种替代方法,不需要对 SOI 进行仔细的专家勾画,而这种勾画可能难以获得或费力。此外,fLSSM 还具有对多个成像模式下的 SOI 进行同时分割的附加优势。