Khurd Parmeshwar, Verma Ragini, Davatzikos Christos
Section of Biomedical Image Analysis, Dept. of Radiology, University of Pennsylvania, Philadelphia, USA.
Inf Process Med Imaging. 2007;20:581-93. doi: 10.1007/978-3-540-73273-0_48.
Diffusion tensor imaging (DTI) is an important modality to study white matter structure in brain images and voxel-based group-wise statistical analysis of DTI is an integral component in most biomedical applications of DTI. Voxel-based DTI analysis should ideally satisfy two desiderata: (1) it should obtain a good characterization of the statistical distribution of the tensors under consideration at a given voxel, which typically lie on a non-linear submanifold of R6, and (2) it should find an optimal way to identify statistical differences between two groups of tensor measurements, e.g., as in comparative studies between normal and diseased populations. In this paper, extending previous work on the application of manifold learning techniques to DTI, we shall present a kernel-based approach to voxel-wise statistical analysis of DTI data that satisfies both these desiderata. Using both simulated and real data, we shall show that kernel principal component analysis (kPCA) can effectively learn the probability density of the tensors under consideration and that kernel Fisher discriminant analysis (kFDA) can find good features that can optimally discriminate between groups. We shall also present results from an application of kFDA to a DTI dataset obtained as part of a clinical study of schizophrenia.
扩散张量成像(DTI)是研究脑图像中白质结构的一种重要方法,基于体素的DTI组间统计分析是DTI在大多数生物医学应用中的一个重要组成部分。理想情况下,基于体素的DTI分析应满足两个要求:(1)它应能很好地表征给定体素处所考虑张量的统计分布,这些张量通常位于R6的非线性子流形上;(2)它应找到一种最优方法来识别两组张量测量值之间的统计差异,例如在正常人群和患病群体的比较研究中。在本文中,我们扩展了先前将流形学习技术应用于DTI的工作,将提出一种基于核的方法用于DTI数据的体素级统计分析,该方法满足这两个要求。通过使用模拟数据和真实数据,我们将表明核主成分分析(kPCA)可以有效地学习所考虑张量的概率密度,并且核Fisher判别分析(kFDA)可以找到能够最优地区分不同组的良好特征。我们还将展示kFDA应用于作为精神分裂症临床研究一部分获得的DTI数据集的结果。