Suppr超能文献

利用扩散张量图像对大脑中疾病诱发模式进行分类

On classifying disease-induced patterns in the brain using diffusion tensor images.

作者信息

Wang Peng, Verma Ragini

机构信息

Section of Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Med Image Comput Comput Assist Interv. 2008;11(Pt 1):908-16. doi: 10.1007/978-3-540-85988-8_108.

Abstract

Diffusion tensor imaging (DTI) provides rich information about brain tissue structure especially in the white matter, which is known to be affected in several diseases like schizophrenia. Identifying patterns of brain changes induced by pathology is therefore crucial to clinical studies. However, the high dimensionality and complex structure of DTI make it difficult to apply conventional linear statistical and pattern classification methods to identify such patterns. In this paper, we present a novel framework that uses a combination of DTI-based anisotropy and geometry features to effectively identify brain regions with pathology-induced abnormality, and to classify brains into the diseased and healthy groups. Our method first directly estimates the underlying overlap between the patient and control groups, based on a semi-parametric Bayes error estimation method. By ranking voxels based on these estimation results, the method identifies abnormal brain regions from which features are extracted through Kernel Principal Component Analysis (KPCA) for subsequent classification. Application of the method to a dataset of controls and patients with schizophrenia, demonstrates promising accuracy of this framework in identifying brain patterns to separate two groups, and hence aiding in prognosis and treatment.

摘要

扩散张量成像(DTI)能提供有关脑组织结构的丰富信息,尤其是在白质方面,而众所周知,白质在精神分裂症等多种疾病中会受到影响。因此,识别由病理引起的脑部变化模式对于临床研究至关重要。然而,DTI的高维度和复杂结构使得难以应用传统的线性统计和模式分类方法来识别此类模式。在本文中,我们提出了一种新颖的框架,该框架结合基于DTI的各向异性和几何特征,以有效识别具有病理诱导异常的脑区,并将脑部分为患病组和健康组。我们的方法首先基于半参数贝叶斯误差估计方法直接估计患者组和对照组之间的潜在重叠。通过根据这些估计结果对体素进行排序,该方法识别出异常脑区,然后通过核主成分分析(KPCA)从这些区域提取特征以进行后续分类。将该方法应用于对照组和精神分裂症患者的数据集,证明了该框架在识别区分两组的脑模式方面具有可观的准确性,从而有助于预后和治疗。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验