Demidenko Eugene
Dartmouth Medical School, Hanover, NH 03755, U.S.A.
Stat Med. 2008 Jan 15;27(1):36-46. doi: 10.1002/sim.2980.
There is no consensus on what test to use as the basis for sample size determination and power analysis. Some authors advocate the Wald test and some the likelihood-ratio test. We argue that the Wald test should be used because the Z-score is commonly applied for regression coefficient significance testing and therefore the same statistic should be used in the power function. We correct a widespread mistake on sample size determination when the variance of the maximum likelihood estimate (MLE) is estimated at null value. In our previous paper, we developed a correct sample size formula for logistic regression with single exposure (Statist. Med. 2007; 26(18):3385-3397). In the present paper, closed-form formulas are derived for interaction studies with binary exposure and covariate in logistic regression. The formula for the optimal control-case ratio is derived such that it maximizes the power function given other parameters. Our sample size and power calculations with interaction can be carried out online at www.dartmouth.edu/ approximately eugened.
对于使用何种检验作为样本量确定和效能分析的基础,目前尚无共识。一些作者主张使用 Wald 检验,另一些则主张使用似然比检验。我们认为应使用 Wald 检验,因为 Z 分数通常用于回归系数显著性检验,因此在效能函数中应使用相同的统计量。我们纠正了一个在样本量确定方面广泛存在的错误,即在零值处估计最大似然估计(MLE)的方差时的错误。在我们之前的论文中,我们为单暴露逻辑回归开发了一个正确的样本量公式(《统计医学》2007 年;26(18):3385 - 3397)。在本文中,推导了用于逻辑回归中二元暴露和协变量交互研究的封闭形式公式。推导出了最优对照 - 病例比的公式,以便在给定其他参数的情况下使效能函数最大化。我们关于交互作用的样本量和效能计算可在 www.dartmouth.edu/ approximately eugened 在线进行。