Bédouet Laurent, Marie Arul, Dubost Lionel, Péduzzi Jean, Duplat Denis, Berland Sophie, Puisségur Marion, Boulzaguet Hélène, Rousseau Marthe, Milet Christian, Lopez Evelyne
Département des Milieux et Peuplements Aquatiques, UMR 5178, CNRS-MNHN Biologie des Organismes Marins et Ecosystèmes, ERT Valorisation de Molécules Bioactives d'Origine Marine, Muséum National d'Histoire Naturelle, Paris, France.
Mar Biotechnol (NY). 2007 Sep-Oct;9(5):638-49. doi: 10.1007/s10126-007-9017-1. Epub 2007 Jul 21.
Shell nacre is laid upon an organic cell-free matrix, part of which, paradoxically, is water soluble and displays biological activities. Proteins in the native shell also constitute an insoluble network and offer a model for studying supramolecular organization as a means of self-ordering. Consequently, difficulties are encountered in extraction and purification strategies for protein characterization. In this work, water-soluble proteins and the insoluble conhiolin residue of the nacre of Pinctada margaritifera matrix were analyzed via a proteomics approach. Two sequences homologous to nacre matrix proteins of other Pinctada species were identified in the water-soluble extract. One of them is known as a fundamental component of the insoluble organic matrix of nacre. In the conchiolin, the insoluble residue, four homologs of Pinctada nacre matrix proteins were found. Two of them were the same as the molecules characterized in the water-soluble extract. Results established that soluble and insoluble proteins of the nacre organic matrix share constitutive material. Surprisingly, a peptide in the conchiolin residue was found homologous to a prismatic matrix protein of Pinctada fucata, suggesting that prismatic and nacre matrices may share common proteins. The insoluble properties of shell matrix proteins appear to arise from structural organization via multimerization. The oxidative activity, found in the water-soluble fraction of the nacre matrix, is proposed as a leading process in the transformation of transient soluble proteins into the insoluble network of conchiolin during nacre growth.
贝壳珍珠层沉积于无细胞有机基质之上,矛盾的是,该基质的一部分是水溶性的且具有生物活性。天然贝壳中的蛋白质也构成了一个不溶性网络,并为研究作为自组装方式的超分子组织提供了一个模型。因此,在用于蛋白质表征的提取和纯化策略中会遇到困难。在这项工作中,通过蛋白质组学方法分析了珠母贝基质珍珠层的水溶性蛋白质和不溶性贝壳硬蛋白残留物。在水溶性提取物中鉴定出了与其他珠母贝物种的珍珠层基质蛋白同源的两个序列。其中一个是珍珠层不溶性有机基质的基本成分。在贝壳硬蛋白(即不溶性残留物)中,发现了四个珠母贝珍珠层基质蛋白的同源物。其中两个与水溶性提取物中鉴定出的分子相同。结果表明,珍珠层有机基质的可溶性和不溶性蛋白质共享组成成分。令人惊讶的是,在贝壳硬蛋白残留物中发现了一个与合浦珠母贝棱柱层基质蛋白同源的肽段,这表明棱柱层和珍珠层基质可能共享共同的蛋白质。贝壳基质蛋白的不溶性似乎源于通过多聚化形成的结构组织。珍珠层基质水溶性部分中发现的氧化活性被认为是珍珠层生长过程中瞬时可溶性蛋白质转变为贝壳硬蛋白不溶性网络的主要过程。