Suppr超能文献

丁香假单胞菌两个致病型的鞭毛蛋白聚糖含有不同比例的D型和L型鼠李糖以及修饰的4-氨基-4,6-二脱氧葡萄糖。

Flagellin glycans from two pathovars of Pseudomonas syringae contain rhamnose in D and L configurations in different ratios and modified 4-amino-4,6-dideoxyglucose.

作者信息

Takeuchi Kasumi, Ono Hiroshi, Yoshida Mitsuru, Ishii Tadashi, Katoh Etsuko, Taguchi Fumiko, Miki Ryuji, Murata Katsuyoshi, Kaku Hanae, Ichinose Yuki

机构信息

National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan.

出版信息

J Bacteriol. 2007 Oct;189(19):6945-56. doi: 10.1128/JB.00500-07. Epub 2007 Jul 20.

Abstract

Flagellins from Pseudomonas syringae pv. glycinea race 4 and Pseudomonas syringae pv. tabaci 6605 have been found to be glycosylated. Glycosylation of flagellin is essential for bacterial virulence and is also involved in the determination of host specificity. Flagellin glycans from both pathovars were characterized, and common sites of glycosylation were identified on six serine residues (positions 143, 164, 176, 183, 193, and 201). The structure of the glycan at serine 201 (S201) of flagellin from each pathovar was determined by sugar composition analysis, mass spectrometry, and (1)H and (13)C nuclear magnetic resonance spectroscopy. These analyses showed that the S201 glycans from both pathovars were composed of a common unique trisaccharide consisting of two rhamnosyl (Rha) residues and one modified 4-amino-4,6-dideoxyglucosyl (Qui4N) residue, beta-D-Quip4N(3-hydroxy-1-oxobutyl)2Me-(1-->3)-alpha-L-Rhap-(1-->2)-alpha-L-Rhap. Furthermore, mass analysis suggests that the glycans on each of the six serine residues are composed of similar trisaccharide units. Determination of the enantiomeric ratio of Rha from the flagellin proteins showed that flagellin from P. syringae pv. tabaci 6605 consisted solely of L-Rha, whereas P. syringae pv. glycinea race 4 flagellin contained both L-Rha and D-Rha at a molar ratio of about 4:1. Taking these findings together with those from our previous study, we conclude that these flagellin glycan structures may be important for the virulence and host specificity of P. syringae.

摘要

已发现来自丁香假单胞菌大豆致病变种4型(Pseudomonas syringae pv. glycinea race 4)和烟草致病变种6605型(Pseudomonas syringae pv. tabaci 6605)的鞭毛蛋白发生了糖基化。鞭毛蛋白的糖基化对于细菌毒力至关重要,并且还参与宿主特异性的确定。对这两个致病变种的鞭毛蛋白聚糖进行了表征,并在六个丝氨酸残基(第143、164、176、183、193和201位)上鉴定出了常见的糖基化位点。通过糖组成分析、质谱以及氢-1(¹H)和碳-13(¹³C)核磁共振光谱法确定了每个致病变种鞭毛蛋白丝氨酸201(S201)处聚糖的结构。这些分析表明,两个致病变种的S201聚糖均由一种常见的独特三糖组成,该三糖由两个鼠李糖基(Rha)残基和一个修饰的4-氨基-4,6-二脱氧葡糖基(Qui4N)残基组成,即β-D-Qui4N(3-羟基-1-氧代丁基)2Me-(1→3)-α-L-Rhap-(1→2)-α-L-Rhap。此外,质谱分析表明六个丝氨酸残基上的聚糖均由相似的三糖单元组成。从鞭毛蛋白中测定鼠李糖的对映体比例表明,烟草致病变种6605型丁香假单胞菌的鞭毛蛋白仅由L-鼠李糖组成,而大豆致病变种4型丁香假单胞菌的鞭毛蛋白含有L-鼠李糖和D-鼠李糖,摩尔比约为4:1。将这些发现与我们之前研究的结果结合起来,我们得出结论,这些鞭毛蛋白聚糖结构可能对丁香假单胞菌的毒力和宿主特异性很重要。

相似文献

2
Comparative analysis of flagellin glycans among pathovars of phytopathogenic Pseudomonas syringae.
Carbohydr Res. 2013 Jun 28;375:100-4. doi: 10.1016/j.carres.2013.04.018. Epub 2013 Apr 23.
3
Structural characterization of an O-linked tetrasaccharide from Pseudomonas syringae pv. tabaci flagellin.
Carbohydr Res. 2009 Nov 2;344(16):2250-4. doi: 10.1016/j.carres.2009.07.004. Epub 2009 Jul 18.
4
5
Defects in flagellin glycosylation affect the virulence of Pseudomonas syringae pv. tabaci 6605.
Microbiology (Reading). 2010 Jan;156(Pt 1):72-80. doi: 10.1099/mic.0.030700-0. Epub 2009 Oct 8.
6
Amino acid sequence of bacterial microbe-associated molecular pattern flg22 is required for virulence.
Mol Plant Microbe Interact. 2008 Sep;21(9):1165-74. doi: 10.1094/MPMI-21-9-1165.
7
Genetic analysis of genes involved in synthesis of modified 4-amino-4,6-dideoxyglucose in flagellin of Pseudomonas syringae pv. tabaci.
Mol Genet Genomics. 2009 Dec;282(6):595-605. doi: 10.1007/s00438-009-0489-8. Epub 2009 Sep 29.

引用本文的文献

2
The Astounding World of Glycans from Giant Viruses.
Chem Rev. 2022 Oct 26;122(20):15717-15766. doi: 10.1021/acs.chemrev.2c00118. Epub 2022 Jul 12.
3
Overexpression of F-Box Nictaba Promotes Defense and Anthocyanin Accumulation in After Infection.
Front Plant Sci. 2021 Jul 29;12:692606. doi: 10.3389/fpls.2021.692606. eCollection 2021.
5
Emerging facets of prokaryotic glycosylation.
FEMS Microbiol Rev. 2017 Jan;41(1):49-91. doi: 10.1093/femsre/fuw036. Epub 2016 Aug 26.
8
Gram-negative flagella glycosylation.
Int J Mol Sci. 2014 Feb 19;15(2):2840-57. doi: 10.3390/ijms15022840.
10
Giant DNA virus mimivirus encodes pathway for biosynthesis of unusual sugar 4-amino-4,6-dideoxy-D-glucose (Viosamine).
J Biol Chem. 2012 Jan 27;287(5):3009-18. doi: 10.1074/jbc.M111.314559. Epub 2011 Dec 8.

本文引用的文献

1
Glycosylation of b-Type flagellin of Pseudomonas aeruginosa: structural and genetic basis.
J Bacteriol. 2006 Jun;188(12):4395-403. doi: 10.1128/JB.01642-05.
2
3
Flagellar glycosylation - a new component of the motility repertoire?
Microbiology (Reading). 2006 May;152(Pt 5):1249-1262. doi: 10.1099/mic.0.28735-0.
4
Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence.
Mol Microbiol. 2006 Apr;60(2):299-311. doi: 10.1111/j.1365-2958.2006.05100.x.
5
The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception.
Plant Cell. 2006 Feb;18(2):465-76. doi: 10.1105/tpc.105.036574. Epub 2005 Dec 23.
8
Plants and animals: a different taste for microbes?
Curr Opin Plant Biol. 2005 Aug;8(4):353-60. doi: 10.1016/j.pbi.2005.05.004.
9
Novel oligosaccharide side chains of the collagen-like region of BclA, the major glycoprotein of the Bacillus anthracis exosporium.
J Biol Chem. 2004 Jul 23;279(30):30945-53. doi: 10.1074/jbc.M401613200. Epub 2004 May 19.
10
Structural and genetic characterization of glycosylation of type a flagellin in Pseudomonas aeruginosa.
J Bacteriol. 2004 May;186(9):2523-31. doi: 10.1128/JB.186.9.2523-2531.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验