Horowitz Michal
Laboratory of Environmental Physiology, The Hebrew University, POB 12272, Jerusalem 91120, Israel.
Prog Brain Res. 2007;162:373-92. doi: 10.1016/S0079-6123(06)62018-9.
Heat acclimation (AC) is a "within lifetime" reversible phenotypic adaptation, enhancing thermotolerance and heat endurance via a transition to "efficient" cellular performance when acclimatory homeostasis is reached. An inseparable outcome of AC is the development of cross-tolerance (C-T) against novel stressors. This chapter focuses on central plasticity and the molecular-physiological linkage of acclimatory and C-T responses. A drop in temperature thresholds (T-Tsh) for activation of heat-dissipation mechanisms and an elevated T-Tsh for thermal injury development imply autonomic nervous system (ANS) and cytoprotective network involvement in these processes. During acclimation, the changes in T-Tsh for heat dissipation are biphasic. Initially T-Tsh drops, signifying the early autonomic response, and is associated with perturbed peripheral effector cellular performance. Pre-acclimation values return when acclimatory homeostasis is achieved. The changes in the ANS suggest that acclimatory plasticity involves molecular and cellular changes. These changes are manifested by the activation of central peripheral molecular networks and post-translational modifications. Sympathetic induction of elevated HSP 72 reservoirs, with faster heat shock response, is only one example of this. The global genomic response, detected using gene-chips and cluster analyses imply upregulation of genes encoding ion channels, pumps, and transporters (markers for neuronal excitability) in the hypothalamus at the onset of AC and down regulation of metabotrophic genes upon long term AC. Peripherally, the transcriptional program indicates a two-tier defense strategy. The immediate transient response is associated with the maintenance of DNA and cellular integrity. The sustained response correlates with long-lasting cytoprotective-signaling networks. C-T is recorded against cerebral hypoxia, hyperoxia, and traumatic brain injury. Using the highly developed ischemic/reperfused heart model as a baseline, it is evident that C-T stems via protective shared pathways developed with AC. These comprise constitutive elevation of HIF 1alpha and associated target pathways, HSPs, anti-apoptosis, and antioxidative pathways. Collectively the master regulators of AC and C-T are still enigmatic; however, cutting-edge investigative techniques, using a broad molecular approach, challenge current ideas, and the data accumulated will pinpoint novel pathways and provide new perspectives.
热适应(AC)是一种“在生命周期内”可逆的表型适应,当达到适应性稳态时,通过向“高效”细胞性能转变来增强耐热性和热耐力。AC不可分割的结果是对新应激源产生交叉耐受性(C-T)。本章重点关注中枢可塑性以及适应性和C-T反应的分子生理联系。激活散热机制的温度阈值(T-Tsh)下降以及热损伤发展的T-Tsh升高意味着自主神经系统(ANS)和细胞保护网络参与了这些过程。在适应过程中,散热的T-Tsh变化是双相的。最初T-Tsh下降,这表明早期自主反应,并与外周效应细胞性能紊乱有关。当达到适应性稳态时,预适应值会恢复。ANS的变化表明适应性可塑性涉及分子和细胞变化。这些变化表现为中枢外周分子网络的激活和翻译后修饰。交感神经诱导HSP 72储备升高,热休克反应更快,这只是其中一个例子。使用基因芯片和聚类分析检测到的全局基因组反应表明,在AC开始时,下丘脑编码离子通道、泵和转运蛋白(神经元兴奋性标记)的基因上调,而长期AC后代谢型基因下调。在外周,转录程序表明有两层防御策略。即时短暂反应与DNA和细胞完整性的维持有关。持续反应与持久的细胞保护信号网络相关。已记录到对脑缺氧、高氧和创伤性脑损伤的C-T。以高度发达的缺血/再灌注心脏模型为基线,很明显C-T是通过与AC共同发展的保护性共享途径产生的。这些途径包括HIF 1α的组成性升高以及相关的靶途径、热休克蛋白、抗凋亡和抗氧化途径。总体而言,AC和C-T的主要调节因子仍然是个谜;然而,使用广泛分子方法的前沿研究技术对当前观点提出了挑战,积累的数据将确定新的途径并提供新的视角。