Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France.
Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston.
JAMA Oncol. 2018 Oct 1;4(10):e182078. doi: 10.1001/jamaoncol.2018.2078. Epub 2018 Oct 11.
There is an urgent need to improve lung cancer risk assessment because current screening criteria miss a large proportion of cases.
To investigate whether a lung cancer risk prediction model based on a panel of selected circulating protein biomarkers can outperform a traditional risk prediction model and current US screening criteria.
DESIGN, SETTING, AND PARTICIPANTS: Prediagnostic samples from 108 ever-smoking patients with lung cancer diagnosed within 1 year after blood collection and samples from 216 smoking-matched controls from the Carotene and Retinol Efficacy Trial (CARET) cohort were used to develop a biomarker risk score based on 4 proteins (cancer antigen 125 [CA125], carcinoembryonic antigen [CEA], cytokeratin-19 fragment [CYFRA 21-1], and the precursor form of surfactant protein B [Pro-SFTPB]). The biomarker score was subsequently validated blindly using absolute risk estimates among 63 ever-smoking patients with lung cancer diagnosed within 1 year after blood collection and 90 matched controls from 2 large European population-based cohorts, the European Prospective Investigation into Cancer and Nutrition (EPIC) and the Northern Sweden Health and Disease Study (NSHDS).
Model validity in discriminating between future lung cancer cases and controls. Discrimination estimates were weighted to reflect the background populations of EPIC and NSHDS validation studies (area under the receiver-operating characteristics curve [AUC], sensitivity, and specificity).
In the validation study of 63 ever-smoking patients with lung cancer and 90 matched controls (mean [SD] age, 57.7 [8.7] years; 68.6% men) from EPIC and NSHDS, an integrated risk prediction model that combined smoking exposure with the biomarker score yielded an AUC of 0.83 (95% CI, 0.76-0.90) compared with 0.73 (95% CI, 0.64-0.82) for a model based on smoking exposure alone (P = .003 for difference in AUC). At an overall specificity of 0.83, based on the US Preventive Services Task Force screening criteria, the sensitivity of the integrated risk prediction (biomarker) model was 0.63 compared with 0.43 for the smoking model. Conversely, at an overall sensitivity of 0.42, based on the US Preventive Services Task Force screening criteria, the integrated risk prediction model yielded a specificity of 0.95 compared with 0.86 for the smoking model.
This study provided a proof of principle in showing that a panel of circulating protein biomarkers may improve lung cancer risk assessment and may be used to define eligibility for computed tomography screening.
迫切需要改进肺癌风险评估,因为当前的筛查标准错过了很大一部分病例。
研究基于一组选定的循环蛋白生物标志物的肺癌风险预测模型是否可以优于传统的风险预测模型和当前的美国筛查标准。
设计、设置和参与者:使用来自 Carotene 和视黄醇功效试验(CARET)队列中 108 名在采血后 1 年内确诊的吸烟肺癌患者的预测前样本和来自 216 名吸烟匹配对照者的样本,开发了一个基于 4 种蛋白(癌抗原 125 [CA125]、癌胚抗原 [CEA]、细胞角蛋白 19 片段 [CYFRA 21-1] 和表面活性剂蛋白 B 前体形式 [Pro-SFTPB])的生物标志物风险评分。随后,使用来自 2 个大型欧洲基于人群队列,即欧洲前瞻性癌症和营养研究(EPIC)和瑞典北部健康与疾病研究(NSHDS)中的 63 名在采血后 1 年内确诊的吸烟肺癌患者和 90 名匹配对照者的绝对风险估计值,对生物标志物评分进行了盲法验证。
模型在区分未来肺癌病例和对照方面的有效性。对判别估计值进行加权,以反映 EPIC 和 NSHDS 验证研究的背景人群(接收者操作特征曲线下面积 [AUC]、敏感性和特异性)。
在来自 EPIC 和 NSHDS 的 63 名吸烟肺癌患者和 90 名匹配对照者(平均[标准差]年龄,57.7[8.7]岁;68.6%男性)的验证研究中,将吸烟暴露与生物标志物评分相结合的综合风险预测模型的 AUC 为 0.83(95%CI,0.76-0.90),而仅基于吸烟暴露的模型为 0.73(95%CI,0.64-0.82)(AUC 差异的 P 值为 0.003)。基于美国预防服务工作组的筛查标准,当特异性为 0.83 时,综合风险预测(生物标志物)模型的敏感性为 0.63,而吸烟模型为 0.43。相反,当基于美国预防服务工作组的筛查标准,总体敏感性为 0.42 时,综合风险预测模型的特异性为 0.95,而吸烟模型为 0.86。
本研究提供了一个原理证明,表明一组循环蛋白生物标志物可能改善肺癌风险评估,并可用于定义计算机断层扫描筛查的资格。