De Graef E M, Decostere A, De Leener E, Goossens H, Baele M, Haesebrouck F
Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium.
Microb Drug Resist. 2007 Summer;13(2):135-41. doi: 10.1089/mdr.2007.718.
The prevalence of acquired resistance to streptogramins, macrolides, and lincosamides and the genetic background of this resistance was investigated in Enterococcus faecium strains isolated from food-producing animals and hospital patients 4-5 years after the ban of streptogramins as growth promoters. The minimum inhibitory concentrations (MICs) of quinupristin/dalfopristin (Q/D), virginiamycin M1 (virgM1), erythromycin (ery), tylosin (tyl), and lincomycin (lin) were determined by the agar dilution method for E. faecium isolates derived from pigs (80), broilers (45), and hospitalized patients (103). Resistance or susceptibility was interpreted using a microbiological criterion and breakpoints recommended by the Clinical Laboratory Standards Institute (CLSI), if available. The isolates were also screened by PCR for erm(B), lnu(A), lnu(B), mef(A/E), vat(D), vat(E), vga(A), vga(B), and vgb(A) genes. Acquired resistance to Q/D, virgM1, ery, tyl, and lin was detected in 34%, 96%, 46%, 46%, and 69% of the porcine strains, respectively. For broiler strains this was 15% (Q/D), 98% (virgM1), 69% (ery), 71% (tyl), and 89% (lin) and for human strains 23% (Q/D), 65% (virgM1), 54% (ery), 52% (tyl), and 60% (lin). Strains showing cross-resistance against macrolides and lincosamides almost always carried the erm(B) gene. This gene was present in 64% of the Q/D-resistant isolates. Only in two human and three broiler Q/D- and virgM1-resistant isolates, a combination of the erm(B) and vat(D) or vat(E) genes was found. The genetic background of resistance could not be determined in the other Q/D- or virgM1-resistant strains. This study demonstrates that streptogramin resistance is frequently present in strains from hospitalized patients and food-producing animals, but the genetic basis hitherto mostly remains obscure.
在禁止将链阳性菌素用作生长促进剂4至5年后,对从食品生产动物和医院患者中分离出的粪肠球菌菌株进行了研究,以调查其对链阳性菌素、大环内酯类和林可酰胺类药物获得性耐药的流行情况及其耐药的遗传背景。采用琼脂稀释法测定了来自猪(80株)、肉鸡(45株)和住院患者(103株)的粪肠球菌分离株对奎奴普丁/达福普汀(Q/D)、维吉尼亚霉素M1(virgM1)、红霉素(ery)、泰乐菌素(tyl)和林可霉素(lin)的最低抑菌浓度(MIC)。如果有临床实验室标准协会(CLSI)推荐的微生物学标准和断点,则据此判断耐药或敏感情况。还通过聚合酶链反应(PCR)对分离株进行erm(B)、lnu(A)、lnu(B)、mef(A/E)、vat(D)、vat(E)、vga(A)、vga(B)和vgb(A)基因的筛查。在猪源菌株中,对Q/D、virgM1、ery、tyl和lin的获得性耐药检出率分别为34%、96%、46%、46%和69%。肉鸡菌株的相应比例分别为15%(Q/D)、98%(virgM1)、69%(ery)、71%(tyl)和89%(lin),人源菌株的相应比例分别为23%(Q/D)、65%(virgM1)、54%(ery)、52%(tyl)和60%(lin)。对大环内酯类和林可酰胺类药物表现出交叉耐药的菌株几乎总是携带erm(B)基因。该基因存在于64%的对Q/D耐药的分离株中。仅在两株人源和三株肉鸡源对Q/D和virgM1耐药的分离株中,发现了erm(B)基因与vat(D)或vat(E)基因的组合。在其他对Q/D或virgM1耐药的菌株中,无法确定其耐药的遗传背景。本研究表明,住院患者和食品生产动物的菌株中经常存在对链阳性菌素的耐药性,但迄今为止其遗传基础大多仍不清楚。