Suppr超能文献

镁离子结合和古肌苷修饰稳定了转运核糖核酸(tRNA)中的G15 C48莱维特碱基对。

Mg2+ binding and archaeosine modification stabilize the G15 C48 Levitt base pair in tRNAs.

作者信息

Oliva Romina, Tramontano Anna, Cavallo Luigi

机构信息

Dipartimento di Scienze Applicate, Università di Napoli Parthenope, Naples, Italy.

出版信息

RNA. 2007 Sep;13(9):1427-36. doi: 10.1261/rna.574407. Epub 2007 Jul 24.

Abstract

The G15-C48 Levitt base pair, located at a crucial position in the core of canonical tRNAs, assumes a reverse Watson-Crick (RWC) geometry. By means of bioinformatics analysis and quantum mechanics calculations we show here that such a geometry is moderately more stable than an alternative bifurcated trans geometry, involving the guanine Watson-Crick face and the cytosine keto group, which we have also found in known RNA structures. However we also demonstrate that the RWC geometry can take advantage of additional stabilizing effects such as metal binding or post-transcriptional chemical modification. One of the few strong metal binding sites characterized for cytosolic tRNAs is localized on G15, and a domain-specific complex modification known as archaeosine is widespread at position 15 in archaeal tRNAs. We have found that both the bound Mg2+ ion and the archaeosine modification induce an analogous electron density redistribution, which results in an effective stabilization of the RWC geometry. Metal binding and chemical modification thus play an interchangeable role in stabilizing the G15-C48 correct geometry. Interestingly, these different but convergent strategies are selectively adopted in the different life domains.

摘要

位于标准转运RNA(tRNA)核心关键位置的G15 - C48莱维特碱基对呈现出反向沃森-克里克(RWC)几何结构。通过生物信息学分析和量子力学计算,我们在此表明,这种几何结构比另一种分叉反式几何结构适度更稳定,后者涉及鸟嘌呤的沃森-克里克面和胞嘧啶的酮基,我们在已知的RNA结构中也发现过这种结构。然而,我们还证明,RWC几何结构可以利用额外的稳定作用,如金属结合或转录后化学修饰。为数不多的已确定的胞质tRNA强金属结合位点之一位于G15上,一种称为古肌苷的结构域特异性复合修饰在古细菌tRNA的第15位广泛存在。我们发现,结合的Mg2 +离子和古肌苷修饰都会引起类似的电子密度重新分布,从而有效地稳定了RWC几何结构。因此,金属结合和化学修饰在稳定G15 - C48正确几何结构中发挥着可互换的作用。有趣的是,这些不同但趋同的策略在不同的生命域中被选择性地采用。

相似文献

1
Mg2+ binding and archaeosine modification stabilize the G15 C48 Levitt base pair in tRNAs.
RNA. 2007 Sep;13(9):1427-36. doi: 10.1261/rna.574407. Epub 2007 Jul 24.
3
ArcS from Thermococcus kodakarensis transfers L-lysine to preQ nucleoside derivatives as minimum substrate RNAs.
J Biol Chem. 2024 Aug;300(8):107505. doi: 10.1016/j.jbc.2024.107505. Epub 2024 Jun 27.
4
Archaeosine Modification of Archaeal tRNA: Role in Structural Stabilization.
J Bacteriol. 2020 Mar 26;202(8). doi: 10.1128/JB.00748-19.
6
Discovery and characterization of an amidinotransferase involved in the modification of archaeal tRNA.
J Biol Chem. 2010 Apr 23;285(17):12706-13. doi: 10.1074/jbc.M110.102236. Epub 2010 Feb 3.
9
Higher order structural effects stabilizing the reverse Watson-Crick Guanine-Cytosine base pair in functional RNAs.
Nucleic Acids Res. 2014 Jan;42(2):714-26. doi: 10.1093/nar/gkt800. Epub 2013 Oct 10.
10
The RNA-binding PUA domain of archaeal tRNA-guanine transglycosylase is not required for archaeosine formation.
J Biol Chem. 2006 Mar 17;281(11):6993-7001. doi: 10.1074/jbc.M512841200. Epub 2006 Jan 10.

引用本文的文献

1
Molecular adaptations specific to extreme halophilic archaea could promote high perchlorate tolerance.
Appl Environ Microbiol. 2025 Jun 18;91(6):e0051225. doi: 10.1128/aem.00512-25. Epub 2025 May 9.
2
Occurrence and stability of anion-π interactions between phosphate and nucleobases in functional RNA molecules.
Nucleic Acids Res. 2022 Nov 11;50(20):11455-11469. doi: 10.1093/nar/gkac1081.
3
Reversible RNA phosphorylation stabilizes tRNA for cellular thermotolerance.
Nature. 2022 May;605(7909):372-379. doi: 10.1038/s41586-022-04677-2. Epub 2022 Apr 27.
4
A Quantum-Mechanical Looking Behind the Scene of the Classic G·C Nucleobase Pairs Tautomerization.
Front Chem. 2020 Nov 26;8:574454. doi: 10.3389/fchem.2020.574454. eCollection 2020.
6
Archaeosine Modification of Archaeal tRNA: Role in Structural Stabilization.
J Bacteriol. 2020 Mar 26;202(8). doi: 10.1128/JB.00748-19.
7
Identification of a radical SAM enzyme involved in the synthesis of archaeosine.
Nat Chem Biol. 2019 Dec;15(12):1148-1155. doi: 10.1038/s41589-019-0390-7. Epub 2019 Nov 18.
8
Estimating Strengths of Individual Hydrogen Bonds in RNA Base Pairs: Toward a Consensus between Different Computational Approaches.
ACS Omega. 2019 Apr 23;4(4):7354-7368. doi: 10.1021/acsomega.8b03689. eCollection 2019 Apr 30.
9
NSUN2 introduces 5-methylcytosines in mammalian mitochondrial tRNAs.
Nucleic Acids Res. 2019 Sep 19;47(16):8720-8733. doi: 10.1093/nar/gkz559.
10
The chemical diversity of RNA modifications.
Biochem J. 2019 Apr 26;476(8):1227-1245. doi: 10.1042/BCJ20180445.

本文引用的文献

2
Accurate energies of hydrogen bonded nucleic acid base pairs and triplets in tRNA tertiary interactions.
Nucleic Acids Res. 2006 Feb 6;34(3):865-79. doi: 10.1093/nar/gkj491. Print 2006.
3
Post-transcriptional nucleotide modification and alternative folding of RNA.
Nucleic Acids Res. 2006 Feb 1;34(2):721-33. doi: 10.1093/nar/gkj471. Print 2006.
5
Quantum mechanical continuum solvation models.
Chem Rev. 2005 Aug;105(8):2999-3093. doi: 10.1021/cr9904009.
6
Are the hydrogen bonds of RNA (AU) stronger than those of DNA (AT)? A quantum mechanics study.
Chemistry. 2005 Aug 19;11(17):5062-6. doi: 10.1002/chem.200500255.
7
Recurrent structural RNA motifs, Isostericity Matrices and sequence alignments.
Nucleic Acids Res. 2005 Apr 28;33(8):2395-409. doi: 10.1093/nar/gki535. Print 2005.
8
The role of tRNA as a molecular spring in decoding, accommodation, and peptidyl transfer.
FEBS Lett. 2005 Feb 7;579(4):959-62. doi: 10.1016/j.febslet.2004.10.105.
10
Compilation of tRNA sequences and sequences of tRNA genes.
Nucleic Acids Res. 2005 Jan 1;33(Database issue):D139-40. doi: 10.1093/nar/gki012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验