Suppr超能文献

基于神经电导动态扰动的梯度估计的鸟鸣学习模型。

Model of birdsong learning based on gradient estimation by dynamic perturbation of neural conductances.

作者信息

Fiete Ila R, Fee Michale S, Seung H Sebastian

机构信息

Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, CA, USA.

出版信息

J Neurophysiol. 2007 Oct;98(4):2038-57. doi: 10.1152/jn.01311.2006. Epub 2007 Jul 25.

Abstract

We propose a model of songbird learning that focuses on avian brain areas HVC and RA, involved in song production, and area LMAN, important for generating song variability. Plasticity at HVC --> RA synapses is driven by hypothetical "rules" depending on three signals: activation of HVC --> RA synapses, activation of LMAN --> RA synapses, and reinforcement from an internal critic that compares the bird's own song with a memorized template of an adult tutor's song. Fluctuating glutamatergic input to RA from LMAN generates behavioral variability for trial-and-error learning. The plasticity rules perform gradient-based reinforcement learning in a spiking neural network model of song production. Although the reinforcement signal is delayed, temporally imprecise, and binarized, the model learns in a reasonable amount of time in numerical simulations. Varying the number of neurons in HVC and RA has little effect on learning time. The model makes specific predictions for the induction of bidirectional long-term plasticity at HVC --> RA synapses.

摘要

我们提出了一种鸣禽学习模型,该模型聚焦于参与歌曲产生的鸟类脑区HVC和RA,以及对产生歌曲变异性很重要的脑区LMAN。HVC→RA突触的可塑性由假设的“规则”驱动,这些规则取决于三种信号:HVC→RA突触的激活、LMAN→RA突触的激活,以及来自内部评判机制的强化,该评判机制将鸟类自己的歌声与成年导师歌声的记忆模板进行比较。从LMAN到RA的谷氨酸能输入波动会产生用于试错学习的行为变异性。可塑性规则在歌曲产生的脉冲神经网络模型中执行基于梯度的强化学习。尽管强化信号有延迟、时间上不精确且为二值化,但该模型在数值模拟中能在合理的时间内学习。改变HVC和RA中的神经元数量对学习时间影响很小。该模型对HVC→RA突触处双向长期可塑性的诱导做出了具体预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验