Fiete Ila R, Hahnloser Richard H R, Fee Michale S, Seung H Sebastian
Department of Physics, Harvard University, Cambridge, MA 02138, USA.
J Neurophysiol. 2004 Oct;92(4):2274-82. doi: 10.1152/jn.01133.2003. Epub 2004 Apr 7.
Sparse neural codes have been widely observed in cortical sensory and motor areas. A striking example of sparse temporal coding is in the song-related premotor area high vocal center (HVC) of songbirds: The motor neurons innervating avian vocal muscles are driven by premotor nucleus robustus archistriatalis (RA), which is in turn driven by nucleus HVC. Recent experiments reveal that RA-projecting HVC neurons fire just one burst per song motif. However, the function of this remarkable temporal sparseness has remained unclear. Because birdsong is a clear example of a learned complex motor behavior, we explore in a neural network model with the help of numerical and analytical techniques the possible role of sparse premotor neural codes in song-related motor learning. In numerical simulations with nonlinear neurons, as HVC activity is made progressively less sparse, the minimum learning time increases significantly. Heuristically, this slowdown arises from increasing interference in the weight updates for different synapses. If activity in HVC is sparse, synaptic interference is reduced, and is minimized if each synapse from HVC to RA is used only once in the motif, which is the situation observed experimentally. Our numerical results are corroborated by a theoretical analysis of learning in linear networks, for which we derive a relationship between sparse activity, synaptic interference, and learning time. If songbirds acquire their songs under significant pressure to learn quickly, this study predicts that HVC activity, currently measured only in adults, should also be sparse during the sensorimotor phase in the juvenile bird. We discuss the relevance of these results, linking sparse codes and learning speed, to other multilayered sensory and motor systems.
稀疏神经编码在皮层感觉和运动区域已被广泛观察到。稀疏时间编码的一个显著例子是鸣禽与鸣叫相关的运动前区——高级发声中枢(HVC):支配鸟类发声肌肉的运动神经元由运动前核——古纹状体粗核(RA)驱动,而RA又由HVC核驱动。最近的实验表明,投射到RA的HVC神经元在每个鸣叫模式中仅发放一次脉冲串。然而,这种显著的时间稀疏性的功能仍不清楚。由于鸟鸣是一种习得的复杂运动行为的明显例子,我们借助数值和分析技术在神经网络模型中探究稀疏运动前神经编码在与鸣叫相关的运动学习中的可能作用。在使用非线性神经元的数值模拟中,随着HVC活动逐渐变得不那么稀疏,最小学习时间显著增加。从直观上看,这种减慢源于不同突触权重更新中干扰的增加。如果HVC中的活动是稀疏的,突触干扰就会减少,并且如果从HVC到RA的每个突触在模式中仅被使用一次,突触干扰将降至最低,这正是实验中观察到的情况。我们的数值结果得到了线性网络学习理论分析的证实,我们从中推导出了稀疏活动、突触干扰和学习时间之间的关系。如果鸣禽在快速学习的巨大压力下习得它们的鸣叫,这项研究预测,目前仅在成年鸟中测量到的HVC活动在幼鸟的感觉运动阶段也应该是稀疏的。我们讨论了这些将稀疏编码与学习速度联系起来的结果与其他多层感觉和运动系统的相关性。