Suppr超能文献

鸣禽习得强化学习模型中的权重转移

Weight Transfer in the Reinforcement Learning Model of Songbird Acquisition.

作者信息

Tran Khue, Koulakov Alexei

机构信息

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.

Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY, USA.

出版信息

bioRxiv. 2024 Dec 30:2024.12.30.628217. doi: 10.1101/2024.12.30.628217.

Abstract

Song acquisition behavior observed in the songbird system provides a notable example of learning through trial- and-error which parallels human speech acquisition. Studying songbird vocal learning can offer insights into mechanisms underlying human language. We present a computational model of song learning that integrates reinforcement learning (RL) and Hebbian learning and agrees with known songbird circuitry. The song circuit outputs activity from nucleus RA, which receives two primary inputs: timing information from area HVC and stochastic activity from nucleus LMAN. Additionally, song learning relies on Area X, a basal ganglia area that receives dopaminergic inputs from VTA. In our model, song is first acquired in the HVC-to-Area X connectivity, employing an RL mechanism that involves node perturbation. This information is then consolidated into HVC-to-RA synapses through a Hebbian mechanism. The transfer of weights from Area X to RA takes place via the thalamus, utilizing a specific form of spike-timing-dependent plasticity (STDP). Thus, we present a computational model grounded in songbird circuitry in which the optimal policy is initially guided by RL and subsequently transferred to another circuit through Hebbian plasticity.

摘要

在鸣禽系统中观察到的歌曲习得行为提供了一个通过试错学习的显著例子,这与人类语言习得相似。研究鸣禽的声乐学习可以深入了解人类语言的潜在机制。我们提出了一种歌曲学习的计算模型,该模型整合了强化学习(RL)和赫布学习,并与已知的鸣禽神经回路一致。歌曲回路输出来自RA核的活动,RA核接收两个主要输入:来自HVC区域的时间信息和来自LMAN核的随机活动。此外,歌曲学习依赖于X区域,这是一个基底神经节区域,接收来自腹侧被盖区(VTA)的多巴胺能输入。在我们的模型中,歌曲首先在HVC到X区域的连接中习得,采用一种涉及节点扰动的强化学习机制。然后,这些信息通过赫布机制整合到HVC到RA的突触中。权重从X区域转移到RA是通过丘脑进行的,利用一种特定形式的尖峰时间依赖可塑性(STDP)。因此,我们提出了一个基于鸣禽神经回路的计算模型,其中最优策略最初由强化学习引导,随后通过赫布可塑性转移到另一个回路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5ed/11722242/ac72349fa158/nihpp-2024.12.30.628217v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验