Suppr超能文献

纵向数据潜在特质建模的贝叶斯方法。

Bayesian methods for latent trait modelling of longitudinal data.

作者信息

Dunson David B

机构信息

Biostatistics Branch, National Institute of Environmental Health Sciences, NC 27709, USA.

出版信息

Stat Methods Med Res. 2007 Oct;16(5):399-415. doi: 10.1177/0962280206075309. Epub 2007 Jul 26.

Abstract

Latent trait models have long been used in the social science literature for studying variables that can only be measured indirectly through multiple items. However, such models are also very useful in accounting for correlation in multivariate and longitudinal data, particularly when outcomes have mixed measurement scales. Bayesian methods implemented with Markov chain Monte Carlo provide a flexible framework for routine fitting of a broad class of latent variable (LV) models, including very general structural equation models. However, in considering LV models, a number of challenging issues arise, including identifiability, confounding between the mean and variance, uncertainty in different aspects of the model, and difficulty in computation. Motivated by the problem of modelling multidimensional longitudinal data, this article reviews the recent literature, provides some recommendations and highlights areas in need of additional research, focusing on methods for model uncertainty.

摘要

潜在特质模型长期以来一直被用于社会科学文献中,以研究那些只能通过多个项目间接测量的变量。然而,此类模型在解释多变量和纵向数据中的相关性时也非常有用,尤其是当结果具有混合测量尺度时。通过马尔可夫链蒙特卡罗实现的贝叶斯方法为广泛的潜在变量(LV)模型的常规拟合提供了一个灵活的框架,包括非常一般的结构方程模型。然而,在考虑LV模型时,会出现一些具有挑战性的问题,包括可识别性、均值与方差之间的混杂、模型不同方面的不确定性以及计算困难。受多维纵向数据建模问题的推动,本文回顾了近期文献,提供了一些建议,并突出了需要进一步研究的领域,重点是模型不确定性的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验