文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

心律失常和心肌肥厚中的线粒体功能障碍

Mitochondrial Dysfunction in Arrhythmia and Cardiac Hypertrophy.

作者信息

Wang Xiaomei, Yu Qianxue, Liao Xuemei, Fan Mengying, Liu Xibin, Liu Qian, Wang Manru, Wu Xinyu, Huang Chun-Kai, Tan Rubin, Yuan Jinxiang

机构信息

College of Basic Medical, Jining Medical University, 272067 Jining, Shandong, China.

Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, 272067 Jining, Shandong, China.

出版信息

Rev Cardiovasc Med. 2023 Dec 25;24(12):364. doi: 10.31083/j.rcm2412364. eCollection 2023 Dec.


DOI:10.31083/j.rcm2412364
PMID:39077079
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11272842/
Abstract

Arrhythmia and cardiac hypertrophy are two very common cardiovascular diseases that can lead to heart failure and even sudden death, thus presenting a serious threat to human life and health. According to global statistics, nearly one million people per year die from arrhythmia, cardiac hypertrophy and other associated cardiovascular diseases. Hence, there is an urgent need to find new treatment targets and to develop new intervention measures. Recently, mitochondrial dysfunction has been examined in relation to heart disease with a view to lowering the incidence of arrhythmia and cardiac hypertrophy. The heart is the body's largest energy consuming organ, turning over about 20 kg of adenosine triphosphate (ATP) per day in the mitochondria. Mitochondrial oxidative phosphorylation (OXPHOS) produces up to 90% of the ATP needed by cardiac muscle cells for contraction and relaxation. Dysfunction of heart mitochondria can therefore induce arrhythmia, cardiac hypertrophy and other cardiovascular diseases. Mitochondrial () mutations cause disorders in OXPHOS and defects in the synthesis of muscle contraction proteins. These lead to insufficient production of secondary ATP, increased metabolic requirements for ATP by the myocardium, and the accumulation of reactive oxygen species (ROS). The resulting damage to myocardial cells eventually induces arrhythmia and cardiac hypertrophy. Mitochondrial damage decreases the efficiency of energy production, which further increases the production of ROS. The accumulation of ROS causes mitochondrial damage and eventually leads to a vicious cycle of mitochondrial damage and low efficiency of mitochondrial energy production. In this review, the mechanism underlying the development of arrhythmia and cardiac hypertrophy is described in relation to mitochondrial energy supply, oxidative stress, mutation and Mitochondrial dynamics. Targeted therapy for arrhythmia and cardiac hypertrophy induced by mitochondrial dysfunction is also discussed in terms of its potential clinical value. These strategies should improve our understanding of mitochondrial biology and the pathogenesis of arrhythmia and cardiac hypertrophy. They may also identify novel strategies for targeting mitochondria in the treatment of these diseases.

摘要

心律失常和心肌肥厚是两种非常常见的心血管疾病,可导致心力衰竭甚至猝死,从而对人类生命健康构成严重威胁。据全球统计,每年有近100万人死于心律失常、心肌肥厚及其他相关心血管疾病。因此,迫切需要寻找新的治疗靶点并开发新的干预措施。近年来,人们对线粒体功能障碍与心脏病的关系进行了研究,以期降低心律失常和心肌肥厚的发生率。心脏是人体最大的耗能器官,每天在线粒体中周转约20千克三磷酸腺苷(ATP)。线粒体氧化磷酸化(OXPHOS)产生高达90%的心肌细胞收缩和舒张所需的ATP。因此,心脏线粒体功能障碍可诱发心律失常、心肌肥厚等心血管疾病。线粒体()突变导致OXPHOS紊乱和肌肉收缩蛋白合成缺陷。这些导致继发性ATP产生不足,心肌对ATP的代谢需求增加,以及活性氧(ROS)的积累。由此对心肌细胞造成的损伤最终诱发心律失常和心肌肥厚。线粒体损伤降低了能量产生的效率,这进一步增加了ROS的产生。ROS的积累导致线粒体损伤,并最终导致线粒体损伤和线粒体能量产生效率低下的恶性循环。在这篇综述中,将描述心律失常和心肌肥厚发生发展的机制与线粒体能量供应、氧化应激、突变和线粒体动力学的关系。还将从其潜在的临床价值方面讨论针对线粒体功能障碍诱发的心律失常和心肌肥厚的靶向治疗。这些策略应能增进我们对线粒体生物学以及心律失常和心肌肥厚发病机制的理解。它们还可能为这些疾病的治疗确定靶向线粒体的新策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c19d/11272842/14e3bdeff270/2153-8174-24-12-364-g2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c19d/11272842/0d1a0d71ae17/2153-8174-24-12-364-g1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c19d/11272842/14e3bdeff270/2153-8174-24-12-364-g2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c19d/11272842/0d1a0d71ae17/2153-8174-24-12-364-g1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c19d/11272842/14e3bdeff270/2153-8174-24-12-364-g2.jpg

相似文献

[1]
Mitochondrial Dysfunction in Arrhythmia and Cardiac Hypertrophy.

Rev Cardiovasc Med. 2023-12-25

[2]
mtDNA Heteroplasmy at the Core of Aging-Associated Heart Failure. An Integrative View of OXPHOS and Mitochondrial Life Cycle in Cardiac Mitochondrial Physiology.

Front Cell Dev Biol. 2021-2-22

[3]
Mitochondrial biogenesis: pharmacological approaches.

Curr Pharm Des. 2014

[4]
Mitochondrial inefficiencies and anoxic ATP hydrolysis capacities in diabetic rat heart.

Am J Physiol Cell Physiol. 2014-6-11

[5]
Mitochondrial network remodeling of the diabetic heart: implications to ischemia related cardiac dysfunction.

Cardiovasc Diabetol. 2024-7-18

[6]
Mitochondrial oxidative metabolism and uncoupling proteins in the failing heart.

Heart Fail Rev. 2015-3

[7]
Energetic Dysfunction Is Mediated by Mitochondrial Reactive Oxygen Species and Precedes Structural Remodeling in Metabolic Heart Disease.

Antioxid Redox Signal. 2019-6-25

[8]
Mitochondrial Reactive Oxygen Species Mediate Cardiac Structural, Functional, and Mitochondrial Consequences of Diet-Induced Metabolic Heart Disease.

J Am Heart Assoc. 2016-1-11

[9]
Targeting Mitochondrial Function with Chemoptogenetics.

Biomedicines. 2022-10-1

[10]
Mitochondrial Mutations in Cardiac Disorders.

Adv Exp Med Biol. 2017

引用本文的文献

[1]
Elevated levels of Letm1 drives mitochondrial dysfunction and cardiomyocyte stress-mediated apoptosis in cultured cardiomyocytes.

Cell Commun Signal. 2025-8-23

[2]
Homocysteine promotes cardiomyocyte hypertrophy through inhibiting β-catenin/ FUNDC1 mediated mitophagy.

Sci Rep. 2025-7-1

[3]
Dilated Cardiomyopathy May Be Associated With a Novel Mitochondrial tRNA Mutation.

Hum Mutat. 2025-6-6

[4]
Mitochondrial Dysfunction in Endothelial Cells: A Key Driver of Organ Disorders and Aging.

Antioxidants (Basel). 2025-3-21

[5]
Redox Homeostasis and Molecular Biomarkers in Precision Therapy for Cardiovascular Diseases.

Antioxidants (Basel). 2024-9-25

本文引用的文献

[1]
Incidence of atrial and ventricular arrhythmias in obese patients with heart failure with reduced ejection fraction treated with sacubitril/valsartan.

Diabetes Obes Metab. 2023-10

[2]
Novel insights into the involvement of mitochondrial fission/fusion in heart failure: From molecular mechanisms to targeted therapies.

Cell Stress Chaperones. 2023-3

[3]
Cardiomyocyte BRAF is a key signalling intermediate in cardiac hypertrophy in mice.

Clin Sci (Lond). 2022-11-30

[4]
A novel mutation in human EMD gene and mitochondrial dysfunction in emerin knockdown cardiomyocytes.

J Cell Mol Med. 2022-10

[5]
Targeting Myocardial Mitochondria-STING-Polyamine Axis Prevents Cardiac Hypertrophy in Chronic Kidney Disease.

JACC Basic Transl Sci. 2022-8-3

[6]
Transient Receptor Potential Vanilloid Type 1 Protects Against Pressure Overload-Induced Cardiac Hypertrophy by Promoting Mitochondria-Associated Endoplasmic Reticulum Membranes.

J Cardiovasc Pharmacol. 2022-9-1

[7]
Myocardial ATP depletion detected noninvasively predicts sudden cardiac death risk in patients with heart failure.

JCI Insight. 2022-6-22

[8]
TECRL deficiency results in aberrant mitochondrial function in cardiomyocytes.

Commun Biol. 2022-5-16

[9]
Thioredoxin-1: A Promising Target for the Treatment of Allergic Diseases.

Front Immunol. 2022

[10]
Mitochondrial damage and activation of the cytosolic DNA sensor cGAS-STING pathway lead to cardiac pyroptosis and hypertrophy in diabetic cardiomyopathy mice.

Cell Death Discov. 2022-5-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索