Wang Xiaomei, Yu Qianxue, Liao Xuemei, Fan Mengying, Liu Xibin, Liu Qian, Wang Manru, Wu Xinyu, Huang Chun-Kai, Tan Rubin, Yuan Jinxiang
College of Basic Medical, Jining Medical University, 272067 Jining, Shandong, China.
Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, 272067 Jining, Shandong, China.
Rev Cardiovasc Med. 2023 Dec 25;24(12):364. doi: 10.31083/j.rcm2412364. eCollection 2023 Dec.
Arrhythmia and cardiac hypertrophy are two very common cardiovascular diseases that can lead to heart failure and even sudden death, thus presenting a serious threat to human life and health. According to global statistics, nearly one million people per year die from arrhythmia, cardiac hypertrophy and other associated cardiovascular diseases. Hence, there is an urgent need to find new treatment targets and to develop new intervention measures. Recently, mitochondrial dysfunction has been examined in relation to heart disease with a view to lowering the incidence of arrhythmia and cardiac hypertrophy. The heart is the body's largest energy consuming organ, turning over about 20 kg of adenosine triphosphate (ATP) per day in the mitochondria. Mitochondrial oxidative phosphorylation (OXPHOS) produces up to 90% of the ATP needed by cardiac muscle cells for contraction and relaxation. Dysfunction of heart mitochondria can therefore induce arrhythmia, cardiac hypertrophy and other cardiovascular diseases. Mitochondrial () mutations cause disorders in OXPHOS and defects in the synthesis of muscle contraction proteins. These lead to insufficient production of secondary ATP, increased metabolic requirements for ATP by the myocardium, and the accumulation of reactive oxygen species (ROS). The resulting damage to myocardial cells eventually induces arrhythmia and cardiac hypertrophy. Mitochondrial damage decreases the efficiency of energy production, which further increases the production of ROS. The accumulation of ROS causes mitochondrial damage and eventually leads to a vicious cycle of mitochondrial damage and low efficiency of mitochondrial energy production. In this review, the mechanism underlying the development of arrhythmia and cardiac hypertrophy is described in relation to mitochondrial energy supply, oxidative stress, mutation and Mitochondrial dynamics. Targeted therapy for arrhythmia and cardiac hypertrophy induced by mitochondrial dysfunction is also discussed in terms of its potential clinical value. These strategies should improve our understanding of mitochondrial biology and the pathogenesis of arrhythmia and cardiac hypertrophy. They may also identify novel strategies for targeting mitochondria in the treatment of these diseases.
心律失常和心肌肥厚是两种非常常见的心血管疾病,可导致心力衰竭甚至猝死,从而对人类生命健康构成严重威胁。据全球统计,每年有近100万人死于心律失常、心肌肥厚及其他相关心血管疾病。因此,迫切需要寻找新的治疗靶点并开发新的干预措施。近年来,人们对线粒体功能障碍与心脏病的关系进行了研究,以期降低心律失常和心肌肥厚的发生率。心脏是人体最大的耗能器官,每天在线粒体中周转约20千克三磷酸腺苷(ATP)。线粒体氧化磷酸化(OXPHOS)产生高达90%的心肌细胞收缩和舒张所需的ATP。因此,心脏线粒体功能障碍可诱发心律失常、心肌肥厚等心血管疾病。线粒体()突变导致OXPHOS紊乱和肌肉收缩蛋白合成缺陷。这些导致继发性ATP产生不足,心肌对ATP的代谢需求增加,以及活性氧(ROS)的积累。由此对心肌细胞造成的损伤最终诱发心律失常和心肌肥厚。线粒体损伤降低了能量产生的效率,这进一步增加了ROS的产生。ROS的积累导致线粒体损伤,并最终导致线粒体损伤和线粒体能量产生效率低下的恶性循环。在这篇综述中,将描述心律失常和心肌肥厚发生发展的机制与线粒体能量供应、氧化应激、突变和线粒体动力学的关系。还将从其潜在的临床价值方面讨论针对线粒体功能障碍诱发的心律失常和心肌肥厚的靶向治疗。这些策略应能增进我们对线粒体生物学以及心律失常和心肌肥厚发病机制的理解。它们还可能为这些疾病的治疗确定靶向线粒体的新策略。
Rev Cardiovasc Med. 2023-12-25
Curr Pharm Des. 2014
Am J Physiol Cell Physiol. 2014-6-11
Cardiovasc Diabetol. 2024-7-18
Heart Fail Rev. 2015-3
Biomedicines. 2022-10-1
Adv Exp Med Biol. 2017
Antioxidants (Basel). 2025-3-21
Antioxidants (Basel). 2024-9-25
Clin Sci (Lond). 2022-11-30
JACC Basic Transl Sci. 2022-8-3
Commun Biol. 2022-5-16
Front Immunol. 2022