Suppr超能文献

癌症微阵列数据的大规模整合识别出一种强大的常见癌症特征。

Large-scale integration of cancer microarray data identifies a robust common cancer signature.

作者信息

Xu Lei, Geman Donald, Winslow Raimond L

机构信息

The Institute for Computational Medicine and Center for Cardiovascular Bioinformatics and Modeling, Johns Hopkins University, Baltimore, MD 21218, USA.

出版信息

BMC Bioinformatics. 2007 Jul 30;8:275. doi: 10.1186/1471-2105-8-275.

Abstract

BACKGROUND

There is a continuing need to develop molecular diagnostic tools which complement histopathologic examination to increase the accuracy of cancer diagnosis. DNA microarrays provide a means for measuring gene expression signatures which can then be used as components of genomic-based diagnostic tests to determine the presence of cancer.

RESULTS

In this study, we collect and integrate ~1500 microarray gene expression profiles from 26 published cancer data sets across 21 major human cancer types. We then apply a statistical method, referred to as the Top-Scoring Pair of Groups (TSPG) classifier, and a repeated random sampling strategy to the integrated training data sets and identify a common cancer signature consisting of 46 genes. These 46 genes are naturally divided into two distinct groups; those in one group are typically expressed less than those in the other group for cancer tissues. Given a new expression profile, the classifier discriminates cancer from normal tissues by ranking the expression values of the 46 genes in the cancer signature and comparing the average ranks of the two groups. This signature is then validated by applying this decision rule to independent test data.

CONCLUSION

By combining the TSPG method and repeated random sampling, a robust common cancer signature has been identified from large-scale microarray data integration. Upon further validation, this signature may be useful as a robust and objective diagnostic test for cancer.

摘要

背景

持续需要开发能够补充组织病理学检查以提高癌症诊断准确性的分子诊断工具。DNA微阵列提供了一种测量基因表达特征的方法,这些特征随后可作为基于基因组的诊断测试的组成部分,用于确定癌症的存在。

结果

在本研究中,我们收集并整合了来自21种主要人类癌症类型的26个已发表癌症数据集的约1500个微阵列基因表达谱。然后,我们将一种称为最高得分组对(TSPG)分类器的统计方法和重复随机抽样策略应用于整合后的训练数据集,并确定了一个由46个基因组成的常见癌症特征。这46个基因自然地分为两个不同的组;对于癌组织,其中一组中的基因通常比另一组中的基因表达量低。给定一个新的表达谱,分类器通过对癌症特征中46个基因的表达值进行排序并比较两组的平均排名来区分癌组织和正常组织。然后通过将此决策规则应用于独立测试数据来验证该特征。

结论

通过结合TSPG方法和重复随机抽样,从大规模微阵列数据整合中识别出了一个稳健的常见癌症特征。经过进一步验证后,该特征可能作为一种稳健且客观的癌症诊断测试有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44fd/1950528/4567d48bbf90/1471-2105-8-275-1.jpg

相似文献

1
Large-scale integration of cancer microarray data identifies a robust common cancer signature.
BMC Bioinformatics. 2007 Jul 30;8:275. doi: 10.1186/1471-2105-8-275.
2
Merging microarray data from separate breast cancer studies provides a robust prognostic test.
BMC Bioinformatics. 2008 Feb 27;9:125. doi: 10.1186/1471-2105-9-125.
3
4
Large scale data mining approach for gene-specific standardization of microarray gene expression data.
Bioinformatics. 2006 Dec 1;22(23):2898-904. doi: 10.1093/bioinformatics/btl500. Epub 2006 Oct 10.
6
A robust meta-classification strategy for cancer diagnosis from gene expression data.
Proc IEEE Comput Syst Bioinform Conf. 2005:322-5. doi: 10.1109/csb.2005.7.
7
Microarray based diagnosis profits from better documentation of gene expression signatures.
PLoS Comput Biol. 2008 Feb;4(2):e22. doi: 10.1371/journal.pcbi.0040022.
9
Eigengene-based linear discriminant model for tumor classification using gene expression microarray data.
Bioinformatics. 2006 Nov 1;22(21):2635-42. doi: 10.1093/bioinformatics/btl442. Epub 2006 Aug 22.
10
Multiclass molecular cancer classification by kernel subspace methods with effective kernel parameter selection.
J Bioinform Comput Biol. 2005 Oct;3(5):1071-88. doi: 10.1142/s0219720005001491.

引用本文的文献

1
Applications of gene pair methods in clinical research: advancing precision medicine.
Mol Biomed. 2025 Apr 9;6(1):22. doi: 10.1186/s43556-025-00263-w.
2
Single-cell and genome-wide Mendelian randomization identifies causative genes for gout.
Arthritis Res Ther. 2024 Jun 3;26(1):114. doi: 10.1186/s13075-024-03348-z.
3
Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases.
Signal Transduct Target Ther. 2023 Nov 13;8(1):427. doi: 10.1038/s41392-023-01651-w.
6
RecQ Helicase Somatic Alterations in Cancer.
Front Mol Biosci. 2022 Jun 15;9:887758. doi: 10.3389/fmolb.2022.887758. eCollection 2022.
7
Alterations in Immune-Related Defensin Alpha 4 () Gene Expression in Health and Disease.
Int J Inflam. 2022 May 28;2022:9099136. doi: 10.1155/2022/9099136. eCollection 2022.
8
Efficacy of a small molecule inhibitor of the transcriptional cofactor PC4 in prevention and treatment of non-small cell lung cancer.
PLoS One. 2020 Mar 31;15(3):e0230670. doi: 10.1371/journal.pone.0230670. eCollection 2020.

本文引用的文献

1
Highly accurate two-gene classifier for differentiating gastrointestinal stromal tumors and leiomyosarcomas.
Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3414-9. doi: 10.1073/pnas.0611373104. Epub 2007 Feb 21.
2
NCBI GEO: mining tens of millions of expression profiles--database and tools update.
Nucleic Acids Res. 2007 Jan;35(Database issue):D760-5. doi: 10.1093/nar/gkl887. Epub 2006 Nov 11.
3
Classifying gene expression profiles from pairwise mRNA comparisons.
Stat Appl Genet Mol Biol. 2004;3:Article19. doi: 10.2202/1544-6115.1071. Epub 2004 Aug 30.
4
Common cancer biomarkers.
Cancer Res. 2006 Mar 15;66(6):2953-61. doi: 10.1158/0008-5472.CAN-05-3433.
6
Novel genes associated with malignant melanoma but not benign melanocytic lesions.
Clin Cancer Res. 2005 Oct 15;11(20):7234-42. doi: 10.1158/1078-0432.CCR-05-0683.
7
Translational crossroads for biomarkers.
Clin Cancer Res. 2005 Sep 1;11(17):6103-8. doi: 10.1158/1078-0432.CCR-04-2213.
8
Detecting common gene expression patterns in multiple cancer outcome entities.
Biomed Microdevices. 2005 Sep;7(3):247-51. doi: 10.1007/s10544-005-3032-7.
9
Robust prostate cancer marker genes emerge from direct integration of inter-study microarray data.
Bioinformatics. 2005 Oct 15;21(20):3905-11. doi: 10.1093/bioinformatics/bti647. Epub 2005 Aug 30.
10
Simple decision rules for classifying human cancers from gene expression profiles.
Bioinformatics. 2005 Oct 15;21(20):3896-904. doi: 10.1093/bioinformatics/bti631. Epub 2005 Aug 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验