Suppr超能文献

一种用于睡眠声音的鼾声/非鼾声分类的有效方法。

An efficient method for snore/nonsnore classification of sleep sounds.

作者信息

Cavusoglu M, Kamasak M, Erogul O, Ciloglu T, Serinagaoglu Y, Akcam T

机构信息

Electrical and Electronics Engineering Department, Middle East Technical University, 06530, Ankara, Turkey.

出版信息

Physiol Meas. 2007 Aug;28(8):841-53. doi: 10.1088/0967-3334/28/8/007. Epub 2007 Jul 6.

Abstract

A new method to detect snoring episodes in sleep sound recordings is proposed. Sleep sound segments (i.e., 'sound episodes' or simply 'episodes') are classified as snores and nonsnores according to their subband energy distributions. The similarity of inter- and intra-individual spectral energy distributions motivated the representation of the feature vectors in a lower dimensional space. Episodes have been efficiently represented in two dimensions using principal component analysis, and classified as snores or nonsnores. The sound recordings were obtained from individuals who are suspected of OSAS pathology while they were connected to the polysomnography in Gülhane Military Medical Academy Sleep Studies Laboratory (GMMA-SSL), Ankara, Turkey. The data from 30 subjects (18 simple snorers and 12 OSA patients) with different apnoea/hypopnea indices were classified using the proposed algorithm. The system was tested by using the manual annotations of an ENT specialist as a reference. The accuracy for simple snorers was found to be 97.3% when the system was trained using only simple snorers' data. It drops to 90.2% when the training data contain both simple snorers' and OSA patients' data. (Both of these results were obtained by using training and testing sets of different individuals.) In the case of snore episode detection with OSA patients the accuracy is 86.8%. All these results can be considered as acceptable values to use the system for clinical purposes including the diagnosis and treatment of OSAS. The method proposed here has been used to develop a tool for the ENT clinic of GMMA-SSL that provides information for objective evaluation of sleep sounds.

摘要

提出了一种在睡眠声音记录中检测打鼾发作的新方法。睡眠声音片段(即“声音发作”或简称为“发作”)根据其子带能量分布被分类为鼾声和非鼾声。个体间和个体内频谱能量分布的相似性促使在低维空间中表示特征向量。使用主成分分析在二维中有效地表示发作,并将其分类为鼾声或非鼾声。声音记录是从土耳其安卡拉古尔汗军事医学院睡眠研究实验室(GMMA - SSL)中连接到多导睡眠图的疑似患有阻塞性睡眠呼吸暂停综合征(OSAS)病理的个体获得的。使用所提出的算法对来自30名具有不同呼吸暂停/低通气指数的受试者(18名单纯打鼾者和12名OSA患者)的数据进行分类。该系统以耳鼻喉科专家的手动注释作为参考进行测试。当仅使用单纯打鼾者的数据进行训练时,单纯打鼾者的准确率为97.3%。当训练数据包含单纯打鼾者和OSA患者的数据时,准确率降至90.2%。(这两个结果均通过使用不同个体的训练集和测试集获得。)在对OSA患者进行打鼾发作检测的情况下,准确率为86.8%。所有这些结果都可被视为将该系统用于包括OSAS诊断和治疗在内的临床目的的可接受值。这里提出的方法已被用于为GMMA - SSL的耳鼻喉科诊所开发一种工具,该工具可为睡眠声音的客观评估提供信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验