Institute of Technology and Science, The University of Tokushima, Tokushima, Japan.
Physiol Meas. 2012 Oct;33(10):1675-89. doi: 10.1088/0967-3334/33/10/1675. Epub 2012 Sep 18.
Obstructive sleep apnea (OSA) is a serious disorder characterized by intermittent events of upper airway collapse during sleep. Snoring is the most common nocturnal symptom of OSA. Almost all OSA patients snore, but not all snorers have the disease. Recently, researchers have attempted to develop automated snore analysis technology for the purpose of OSA diagnosis. These technologies commonly require, as the first step, the automated identification of snore/breathing episodes (SBE) in sleep sound recordings. Snore intensity may occupy a wide dynamic range (> 95 dB) spanning from the barely audible to loud sounds. Low-intensity SBE sounds are sometimes seen buried within the background noise floor, even in high-fidelity sound recordings made within a sleep laboratory. The complexity of SBE sounds makes it a challenging task to develop automated snore segmentation algorithms, especially in the presence of background noise. In this paper, we propose a fundamentally novel approach based on artificial neural network (ANN) technology to detect SBEs. Working on clinical data, we show that the proposed method can detect SBE at a sensitivity and specificity exceeding 0.892 and 0.874 respectively, even when the signal is completely buried in background noise (SNR < 0 dB). We compare the performance of the proposed technology with those of the existing methods (short-term energy, zero-crossing rates) and illustrate that the proposed method vastly outperforms conventional techniques.
阻塞性睡眠呼吸暂停(OSA)是一种严重的疾病,其特征是睡眠期间上呼吸道间歇性塌陷。打鼾是 OSA 最常见的夜间症状。几乎所有 OSA 患者都会打鼾,但并非所有打鼾者都患有该病。最近,研究人员尝试开发自动化打鼾分析技术以用于 OSA 诊断。这些技术通常需要作为第一步,在睡眠声音记录中自动识别打鼾/呼吸事件(SBE)。打鼾强度可能占据从几乎听不到到响亮声音的宽动态范围(>95dB)。在睡眠实验室中制作的高保真录音中,低强度 SBE 声音有时会被背景噪声掩盖。SBE 声音的复杂性使得开发自动化打鼾分割算法成为一项具有挑战性的任务,尤其是在存在背景噪声的情况下。在本文中,我们提出了一种基于人工神经网络(ANN)技术的全新方法来检测 SBE。在临床数据上的工作表明,即使信号完全被背景噪声掩盖(SNR<0dB),所提出的方法也可以分别以超过 0.892 和 0.874 的灵敏度和特异性检测 SBE。我们将所提出技术的性能与现有方法(短期能量、过零率)进行了比较,并说明了所提出的方法大大优于传统技术。