Suppr超能文献

基于混合 1D-2D 卷积神经网络的自动打鼾检测。

Automatic snoring detection using a hybrid 1D-2D convolutional neural network.

机构信息

Key Laboratory of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou, Zhejiang, China.

出版信息

Sci Rep. 2023 Aug 28;13(1):14009. doi: 10.1038/s41598-023-41170-w.

Abstract

Snoring, as a prevalent symptom, seriously interferes with life quality of patients with sleep disordered breathing only (simple snorers), patients with obstructive sleep apnea (OSA) and their bed partners. Researches have shown that snoring could be used for screening and diagnosis of OSA. Therefore, accurate detection of snoring sounds from sleep respiratory audio at night has been one of the most important parts. Considered that the snoring is somewhat dangerously overlooked around the world, an automatic and high-precision snoring detection algorithm is required. In this work, we designed a non-contact data acquire equipment to record nocturnal sleep respiratory audio of subjects in their private bedrooms, and proposed a hybrid convolutional neural network (CNN) model for the automatic snore detection. This model consists of a one-dimensional (1D) CNN processing the original signal and a two-dimensional (2D) CNN representing images mapped by the visibility graph method. In our experiment, our algorithm achieves an average classification accuracy of 89.3%, an average sensitivity of 89.7%, an average specificity of 88.5%, and an average AUC of 0.947, which surpasses some state-of-the-art models trained on our data. In conclusion, our results indicate that the proposed method in this study could be effective and significance for massive screening of OSA patients in daily life. And our work provides an alternative framework for time series analysis.

摘要

打鼾作为一种普遍的症状,严重影响了睡眠呼吸紊乱患者(单纯打鼾者)、阻塞性睡眠呼吸暂停(OSA)患者及其伴侣的生活质量。研究表明,打鼾可用于 OSA 的筛查和诊断。因此,准确检测夜间睡眠呼吸音频中的打鼾声一直是最重要的部分之一。鉴于打鼾在全球范围内被有些危险地忽视,因此需要一种自动且高精度的打鼾检测算法。在这项工作中,我们设计了一种非接触式数据采集设备来记录受试者在私人卧室中的夜间睡眠呼吸音频,并提出了一种混合卷积神经网络(CNN)模型用于自动打鼾检测。该模型由一维(1D)CNN 处理原始信号和二维(2D)CNN 表示由可见性图方法映射的图像组成。在我们的实验中,我们的算法实现了平均分类准确率为 89.3%,平均灵敏度为 89.7%,平均特异性为 88.5%,平均 AUC 为 0.947,优于在我们的数据上训练的一些最先进的模型。总之,我们的结果表明,本研究提出的方法对于日常生活中 OSA 患者的大规模筛查可能是有效和有意义的。我们的工作为时间序列分析提供了一种替代框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2cb/10462688/f2134d2db556/41598_2023_41170_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验