Ghahari Alireza, Badea Tudor C
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:1745-1749. doi: 10.1109/EMBC.2016.7591054.
We propose an automatic spike sorting approach for the data recorded from a microelectrode array during visual stimulation of wild type retinas with tiled spot stimuli. The approach first detects individual spikes per electrode by their signature local minima. With the mixture probability distribution of the local minima estimated afterwards, it applies a minimum-squared-error clustering algorithm to sort the spikes into different clusters. A template waveform for each cluster per electrode is defined, and a number of reliability tests are performed on it and its corresponding spikes. Finally, a divisive hierarchical clustering algorithm is used to deal with the correlated templates per cluster type across all the electrodes. According to the measures of performance of the spike sorting approach, it is robust even in the cases of recordings with low signal-to-noise ratio.
我们提出了一种自动尖峰分类方法,用于在使用平铺点状刺激对视皮层野生型视网膜进行视觉刺激期间,从微电极阵列记录的数据。该方法首先通过其特征性局部最小值检测每个电极上的单个尖峰。随后估计局部最小值的混合概率分布,应用最小二乘误差聚类算法将尖峰分类到不同的簇中。为每个电极上的每个簇定义一个模板波形,并对其及其相应的尖峰进行多次可靠性测试。最后,使用分裂层次聚类算法处理所有电极上每种簇类型的相关模板。根据尖峰分类方法的性能指标,即使在信噪比低的记录情况下,该方法也很稳健。