Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic.
Physiol Res. 2020 Jul 16;69(3):529-536. doi: 10.33549/physiolres.934366. Epub 2020 May 29.
In this work we report on the implementation of methods for data processing signals from microelectrode arrays (MEA) and the application of these methods for signals originated from two types of MEAs to detect putative neurons and sort them into subpopulations. We recorded electrical signals from firing neurons using titanium nitride (TiN) and boron doped diamond (BDD) MEAs. In previous research, we have shown that these methods have the capacity to detect neurons using commercially-available TiN-MEAs. We have managed to cultivate and record hippocampal neurons for the first time using a newly developed custom-made multichannel BDD-MEA with 20 recording sites. We have analysed the signals with the algorithms developed and employed them to inspect firing bursts and enable spike sorting. We did not observe any significant difference between BDD- and TiN-MEAs over the parameters, which estimated spike shape variability per each detected neuron. This result supports the hypothesis that we have detected real neurons, rather than noise, in the BDD-MEA signal. BDD materials with suitable mechanical, electrical and biocompatibility properties have a large potential in novel therapies for treatments of neural pathologies, such as deep brain stimulation in Parkinson's disease.
在这项工作中,我们报告了用于处理微电极阵列 (MEA) 信号的方法的实现,并将这些方法应用于源自两种类型的 MEA 的信号,以检测假定的神经元并将其分为亚群。我们使用氮化钛 (TiN) 和掺硼金刚石 (BDD) MEA 记录放电神经元的电信号。在之前的研究中,我们已经表明,这些方法具有使用市售 TiN-MEA 检测神经元的能力。我们首次成功地使用新开发的具有 20 个记录位点的定制多通道 BDD-MEA 培养和记录海马神经元。我们使用开发的算法分析信号,并将其应用于检查发射爆发和实现尖峰排序。我们没有观察到 BDD-MEA 信号在估计每个检测到的神经元的尖峰形状变异性的参数上与 TiN-MEA 有任何显著差异。这一结果支持我们在 BDD-MEA 信号中检测到真实神经元而不是噪声的假设。具有合适的机械、电气和生物相容性的 BDD 材料在治疗神经病理学的新型治疗方法中具有很大的潜力,例如帕金森病的深部脑刺激。