Ettensohn Charles A, Kitazawa Chisato, Cheers Melani S, Leonard Jennifer D, Sharma Tara
Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
Development. 2007 Sep;134(17):3077-87. doi: 10.1242/dev.009092. Epub 2007 Aug 1.
Cell fates in the sea urchin embryo are remarkably labile, despite the fact that maternal polarity and zygotic programs of differential gene expression pattern the embryo from the earliest stages. Recent work has focused on transcriptional gene regulatory networks (GRNs) deployed in specific embryonic territories during early development. The micromere-primary mesenchyme cell (PMC) GRN drives the development of the embryonic skeleton. Although normally deployed only by presumptive PMCs, every lineage of the early embryo has the potential to activate this pathway. Here, we focus on one striking example of regulative activation of the skeletogenic GRN; the transfating of non-skeletogenic mesoderm (NSM) cells to a PMC fate during gastrulation. We show that transfating is accompanied by the de novo expression of terminal, biomineralization-related genes in the PMC GRN, as well as genes encoding two upstream transcription factors, Lvalx1 and Lvtbr. We report that Lvalx1, a key component of the skeletogenic GRN in the PMC lineage, plays an essential role in the regulative pathway both in NSM cells and in animal blastomeres. MAPK signaling is required for the expression of Lvalx1 and downstream skeletogenic genes in NSM cells, mirroring its role in the PMC lineage. We also demonstrate that Lvalx1 regulates the signal from PMCs that normally suppresses NSM transfating. Significantly, misexpression of Lvalx1 in macromeres (the progenitors of NSM cells) is sufficient to activate the skeletogenic GRN. We suggest that NSM cells normally deploy a basal mesodermal pathway and require only an Lvalx1-mediated sub-program to express a PMC fate. Finally, we provide evidence that, in contrast to the normal pathway, activation of the skeletogenic GRN in NSM cells is independent of Lvpmar1. Our studies reveal that, although most features of the micromere-PMC GRN are recapitulated in transfating NSM cells, different inputs activate this GRN during normal and regulative development.
尽管母体极性和不同基因表达的合子程序从最早阶段就对海胆胚胎进行了模式化,但海胆胚胎中的细胞命运却非常不稳定。最近的研究工作集中在早期发育过程中特定胚胎区域所部署的转录基因调控网络(GRN)。小分裂球 - 初级间充质细胞(PMC)GRN驱动胚胎骨骼的发育。尽管通常仅由推定的PMC部署,但早期胚胎的每个谱系都有激活该途径的潜力。在这里,我们重点关注骨骼生成GRN调节性激活的一个显著例子;即原肠胚形成期间非骨骼生成中胚层(NSM)细胞向PMC命运的转分化。我们表明,转分化伴随着PMC GRN中终端生物矿化相关基因以及编码两个上游转录因子Lvalx1和Lvtbr的基因的从头表达。我们报告说,Lvalx1是PMC谱系中骨骼生成GRN的关键组成部分,在NSM细胞和动物卵裂球的调节途径中都起着至关重要的作用。MAPK信号传导是NSM细胞中Lvalx1和下游骨骼生成基因表达所必需的,这反映了它在PMC谱系中的作用。我们还证明,Lvalx1调节来自PMC的通常抑制NSM转分化的信号。重要的是,Lvalx1在大分裂球(NSM细胞的祖细胞)中的错误表达足以激活骨骼生成GRN。我们认为,NSM细胞通常部署一条基础中胚层途径,并且只需要一个由Lvalx1介导的子程序来表达PMC命运。最后,我们提供证据表明,与正常途径相反,NSM细胞中骨骼生成GRN的激活独立于Lvpmar1。我们的研究表明,尽管在NSM细胞转分化过程中重现了小分裂球 - PMC GRN的大多数特征,但在正常发育和调节性发育过程中,不同的输入激活了这个GRN。