Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
Development. 2012 Feb;139(3):579-90. doi: 10.1242/dev.073049. Epub 2011 Dec 21.
A central challenge of developmental and evolutionary biology is to understand how anatomy is encoded in the genome. Elucidating the genetic mechanisms that control the development of specific anatomical features will require the analysis of model morphogenetic processes and an integration of biological information at genomic, cellular and tissue levels. The formation of the endoskeleton of the sea urchin embryo is a powerful experimental system for developing such an integrated view of the genomic regulatory control of morphogenesis. The dynamic cellular behaviors that underlie skeletogenesis are well understood and a complex transcriptional gene regulatory network (GRN) that underlies the specification of embryonic skeletogenic cells (primary mesenchyme cells, PMCs) has recently been elucidated. Here, we link the PMC specification GRN to genes that directly control skeletal morphogenesis. We identify new gene products that play a proximate role in skeletal morphogenesis and uncover transcriptional regulatory inputs into many of these genes. Our work extends the importance of the PMC GRN as a model developmental GRN and establishes a unique picture of the genomic regulatory control of a major morphogenetic process. Furthermore, because echinoderms exhibit diverse programs of skeletal development, the newly expanded sea urchin skeletogenic GRN will provide a foundation for comparative studies that explore the relationship between GRN evolution and morphological evolution.
发育和进化生物学的一个核心挑战是理解基因组中是如何编码解剖结构的。阐明控制特定解剖特征发育的遗传机制将需要分析模型形态发生过程,并整合基因组、细胞和组织水平上的生物学信息。海胆胚胎内骨骼的形成是一个强大的实验系统,可以用来发展对形态发生的基因组调控控制的综合观点。骨骼发生所依赖的动态细胞行为得到了很好的理解,并且最近已经阐明了一个复杂的转录基因调控网络(GRN),该网络是胚胎骨骼生成细胞(初级间质细胞,PMCs)特化的基础。在这里,我们将 PMC 特化 GRN 与直接控制骨骼形态发生的基因联系起来。我们鉴定了在骨骼形态发生中起直接作用的新基因产物,并揭示了许多这些基因的转录调控输入。我们的工作扩展了 PMC GRN 作为模型发育 GRN 的重要性,并为主要形态发生过程的基因组调控控制建立了一个独特的画面。此外,由于棘皮动物表现出多样化的骨骼发育程序,新扩展的海胆骨骼生成 GRN 将为探索 GRN 进化与形态进化之间关系的比较研究提供基础。