Li Dan, Gromov Kirill, Søballe Kjeld, Puzas J Edward, O'Keefe Regis J, Awad Hani, Drissi Hicham, Schwarz Edward M
The Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, New York 14642, USA.
J Orthop Res. 2008 Jan;26(1):96-105. doi: 10.1002/jor.20452.
Although osteomyelitis (OM) remains a serious problem in orthopedics, progress has been limited by the absence of an in vivo model that can quantify the bacterial load, metabolic activity of the bacteria over time, immunity, and osteolysis. To overcome these obstacles, we developed a murine model of implant-associated OM in which a stainless steel pin is coated with Staphylococcus aureus and implanted transcortically through the tibial metaphysis. X-ray and micro-CT demonstrated concomitant osteolysis and reactive bone formation, which was evident by day 7. Histology confirmed all the hallmarks of implant-associated OM, namely: osteolysis, sequestrum formation, and involucrum of Gram-positive bacteria inside a biofilm within necrotic bone. Serology revealed that mice mount a protective humoral response that commences with an IgM response after 1 week, and converts to a specific IgG2b response against specific S. aureus proteins by day 11 postinfection. Real-time quantitative PCR (RTQ-PCR) for the S. aureus specific nuc gene determined that the peak bacterial load occurs 11 days postinfection. This coincidence of decreasing bacterial load with the generation of specific antibodies is suggestive of protective humoral immunity. Longitudinal in vivo bioluminescent imaging (BLI) of luxA-E transformed S. aureus (Xen29) combined with nuc RTQ-PCR demonstrated the exponential growth phase of the bacteria immediately following infection that peaks on day 4, and is followed by the biofilm growth phase at a significantly lower metabolic rate (p < 0.05). Collectively, these studies demonstrate the first quantitative model of implant-associated OM that defines the kinetics of microbial growth, osteolysis, and humoral immunity following infection.
尽管骨髓炎(OM)在骨科领域仍是一个严重问题,但由于缺乏一种能够量化细菌载量、细菌随时间的代谢活性、免疫反应和骨溶解的体内模型,进展一直有限。为了克服这些障碍,我们开发了一种植入物相关骨髓炎的小鼠模型,其中不锈钢针涂有金黄色葡萄球菌,并经皮穿过胫骨近端干骺端植入。X射线和显微CT显示在第7天就出现了伴随的骨溶解和反应性骨形成。组织学证实了植入物相关骨髓炎的所有特征,即:骨溶解、死骨形成以及坏死骨内生物膜内革兰氏阳性菌的骨膜新生骨。血清学检测显示,小鼠产生了保护性体液反应,感染后1周开始出现IgM反应,并在感染后第11天转变为针对特定金黄色葡萄球菌蛋白的特异性IgG2b反应。针对金黄色葡萄球菌特异性nuc基因的实时定量PCR(RTQ-PCR)确定,感染后11天细菌载量达到峰值。细菌载量下降与特异性抗体产生的这种巧合提示了保护性体液免疫。对luxA-E转化的金黄色葡萄球菌(Xen29)进行纵向体内生物发光成像(BLI)并结合nuc RTQ-PCR显示,感染后细菌立即进入指数生长期,在第4天达到峰值,随后进入生物膜生长期,代谢率显著降低(p<0.05)。总的来说,这些研究展示了第一个植入物相关骨髓炎的定量模型,该模型定义了感染后微生物生长、骨溶解和体液免疫的动力学。