Suppr超能文献

植入物相关骨髓炎的定量小鼠模型以及微生物生长、骨溶解和体液免疫的动力学

Quantitative mouse model of implant-associated osteomyelitis and the kinetics of microbial growth, osteolysis, and humoral immunity.

作者信息

Li Dan, Gromov Kirill, Søballe Kjeld, Puzas J Edward, O'Keefe Regis J, Awad Hani, Drissi Hicham, Schwarz Edward M

机构信息

The Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, New York 14642, USA.

出版信息

J Orthop Res. 2008 Jan;26(1):96-105. doi: 10.1002/jor.20452.

Abstract

Although osteomyelitis (OM) remains a serious problem in orthopedics, progress has been limited by the absence of an in vivo model that can quantify the bacterial load, metabolic activity of the bacteria over time, immunity, and osteolysis. To overcome these obstacles, we developed a murine model of implant-associated OM in which a stainless steel pin is coated with Staphylococcus aureus and implanted transcortically through the tibial metaphysis. X-ray and micro-CT demonstrated concomitant osteolysis and reactive bone formation, which was evident by day 7. Histology confirmed all the hallmarks of implant-associated OM, namely: osteolysis, sequestrum formation, and involucrum of Gram-positive bacteria inside a biofilm within necrotic bone. Serology revealed that mice mount a protective humoral response that commences with an IgM response after 1 week, and converts to a specific IgG2b response against specific S. aureus proteins by day 11 postinfection. Real-time quantitative PCR (RTQ-PCR) for the S. aureus specific nuc gene determined that the peak bacterial load occurs 11 days postinfection. This coincidence of decreasing bacterial load with the generation of specific antibodies is suggestive of protective humoral immunity. Longitudinal in vivo bioluminescent imaging (BLI) of luxA-E transformed S. aureus (Xen29) combined with nuc RTQ-PCR demonstrated the exponential growth phase of the bacteria immediately following infection that peaks on day 4, and is followed by the biofilm growth phase at a significantly lower metabolic rate (p < 0.05). Collectively, these studies demonstrate the first quantitative model of implant-associated OM that defines the kinetics of microbial growth, osteolysis, and humoral immunity following infection.

摘要

尽管骨髓炎(OM)在骨科领域仍是一个严重问题,但由于缺乏一种能够量化细菌载量、细菌随时间的代谢活性、免疫反应和骨溶解的体内模型,进展一直有限。为了克服这些障碍,我们开发了一种植入物相关骨髓炎的小鼠模型,其中不锈钢针涂有金黄色葡萄球菌,并经皮穿过胫骨近端干骺端植入。X射线和显微CT显示在第7天就出现了伴随的骨溶解和反应性骨形成。组织学证实了植入物相关骨髓炎的所有特征,即:骨溶解、死骨形成以及坏死骨内生物膜内革兰氏阳性菌的骨膜新生骨。血清学检测显示,小鼠产生了保护性体液反应,感染后1周开始出现IgM反应,并在感染后第11天转变为针对特定金黄色葡萄球菌蛋白的特异性IgG2b反应。针对金黄色葡萄球菌特异性nuc基因的实时定量PCR(RTQ-PCR)确定,感染后11天细菌载量达到峰值。细菌载量下降与特异性抗体产生的这种巧合提示了保护性体液免疫。对luxA-E转化的金黄色葡萄球菌(Xen29)进行纵向体内生物发光成像(BLI)并结合nuc RTQ-PCR显示,感染后细菌立即进入指数生长期,在第4天达到峰值,随后进入生物膜生长期,代谢率显著降低(p<0.05)。总的来说,这些研究展示了第一个植入物相关骨髓炎的定量模型,该模型定义了感染后微生物生长、骨溶解和体液免疫的动力学。

相似文献

2
Humanized Mice Exhibit Exacerbated Abscess Formation and Osteolysis During the Establishment of Implant-Associated Osteomyelitis.
Front Immunol. 2021 Mar 18;12:651515. doi: 10.3389/fimmu.2021.651515. eCollection 2021.
4
A modified chronic infection model for testing treatment of Staphylococcus aureus biofilms on implants.
PLoS One. 2014 Oct 3;9(10):e103688. doi: 10.1371/journal.pone.0103688. eCollection 2014.
6
Early implant-associated osteomyelitis results in a peri-implanted bacterial reservoir.
APMIS. 2017 Jan;125(1):38-45. doi: 10.1111/apm.12597. Epub 2016 Oct 5.
10
Cutibacterium acnes invades submicron osteocyte lacuno-canalicular networks following implant-associated osteomyelitis.
J Orthop Res. 2024 Nov;42(11):2593-2603. doi: 10.1002/jor.25929. Epub 2024 Jul 24.

引用本文的文献

1
Immune Checkpoint Molecules as Biomarkers of Bone Infection and Clinical Outcome.
bioRxiv. 2024 Dec 31:2024.12.30.630837. doi: 10.1101/2024.12.30.630837.
2
Cortical and Trabecular Bone Modeling and Implications for Bone Functional Adaptation in the Mammalian Tibia.
Bioengineering (Basel). 2024 May 20;11(5):514. doi: 10.3390/bioengineering11050514.
3
4
Staphylococcus aureus Panton-Valentine Leukocidin worsens acute implant-associated osteomyelitis in humanized BRGSF mice.
JBMR Plus. 2024 Jan 4;8(2):ziad005. doi: 10.1093/jbmrpl/ziad005. eCollection 2024 Feb.
6
7
Choosing the right animal model for osteomyelitis research: Considerations and challenges.
J Orthop Translat. 2023 Nov 29;43:47-65. doi: 10.1016/j.jot.2023.10.001. eCollection 2023 Nov.
9
Increased local bone turnover in patients with chronic periprosthetic joint infection.
Bone Joint Res. 2023 Oct 10;12(10):644-653. doi: 10.1302/2046-3758.1210.BJR-2023-0071.R1.

本文引用的文献

1
Vancomycin covalently bonded to titanium alloy prevents bacterial colonization.
J Orthop Res. 2007 Jul;25(7):858-66. doi: 10.1002/jor.20348.
2
Selfprotective smart orthopedic implants.
Expert Rev Med Devices. 2007 Jan;4(1):55-64. doi: 10.1586/17434440.4.1.55.
3
The management of peri-prosthetic infection in total joint arthroplasty.
J Bone Joint Surg Br. 2006 Feb;88(2):149-55. doi: 10.1302/0301-620X.88B2.17058.
4
Biological effects of rAAV-caAlk2 coating on structural allograft healing.
Mol Ther. 2005 Aug;12(2):212-8. doi: 10.1016/j.ymthe.2005.02.026.
5
A model for chronic osteomyelitis using Staphylococcus aureus in goats.
Clin Orthop Relat Res. 2005 Jul(436):246-50. doi: 10.1097/01.blo.0000159154.17131.bf.
6
Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy.
Nat Med. 2005 Mar;11(3):291-7. doi: 10.1038/nm1190. Epub 2005 Feb 13.
7
Osteomyelitis.
Lancet. 2004;364(9431):369-79. doi: 10.1016/S0140-6736(04)16727-5.
8
Treatment of infections associated with surgical implants.
N Engl J Med. 2004 Apr 1;350(14):1422-9. doi: 10.1056/NEJMra035415.
10
A new model of implant-related osteomyelitis in rats.
J Biomed Mater Res B Appl Biomater. 2003 Oct 15;67(1):593-602. doi: 10.1002/jbm.b.10051.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验