Godec Aljaž, Metzler Ralf
Institute for Physics & Astronomy, University of Potsdam, 14476, Potsdam-Golm, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jul;88(1):012116. doi: 10.1103/PhysRevE.88.012116. Epub 2013 Jul 15.
Lévy walks (LWs) are a popular stochastic tool to model anomalous diffusion and have recently been used to describe a variety of phenomena. We study the linear response behavior of this generic model of superdiffusive LWs in finite systems to an external force field under both stationary and nonstationary conditions. These finite-size LWs are based on power-law waiting time distributions with a finite-time regularization at τ(c), such that the physical requirements are met to apply linear response theory and derive the power spectrum with the correct short frequency limit, without the introduction of artificial cutoffs. We obtain the generalized Einstein relation for both ensemble and time averages over the entire process time and determine the turnover to normal Brownian motion when the full system is explored. In particular, we obtain an exact expression for the long time diffusion constant as a function of the scaling exponent of the waiting time density and the characteristic time scale τ(c).
Lévy行走(LWs)是一种用于模拟反常扩散的常用随机工具,最近已被用于描述各种现象。我们研究了有限系统中这种超扩散LWs通用模型在稳态和非稳态条件下对外力场的线性响应行为。这些有限尺寸的LWs基于幂律等待时间分布,并在τ(c)处进行有限时间正则化,从而满足应用线性响应理论并在不引入人为截止的情况下推导具有正确短频率极限的功率谱的物理要求。我们得到了整个过程时间上系综平均和时间平均的广义爱因斯坦关系,并确定了在探索整个系统时向正常布朗运动的转变。特别是,我们得到了长时间扩散常数作为等待时间密度的标度指数和特征时间尺度τ(c)的函数的精确表达式。